首页> 外文期刊>IEEE Transactions on Broadcasting >Modeling the Screen Content Image Quality via Multiscale Edge Attention Similarity
【24h】

Modeling the Screen Content Image Quality via Multiscale Edge Attention Similarity

机译:通过MultiScale边缘注意力建模屏幕内容图像质量

获取原文
获取原文并翻译 | 示例

摘要

Screen content image (SCI) prevails because of the explosive growth of screen oriented applications. This leads to extensive studies on SCI quality assessment and modeling for application optimization. In this paper, we propose a full reference multiscale edge attention (MSEA) similarity index to efficiently measure the perceptual quality of a screen image. This model considers the perceptual impacts of fixation attention, edge structure and edge contrast jointly, to accurately capture the masking phenomena (e.g., frequency selectivity, luminance, contrast, etc.) of our human visual system (HVS) when viewing a screen image. Specifically, we decompose the images using Gaussian and Laplacian pyramids which are then used to derive the edge structure, and edge contrast feature maps. Together with the fixation attention map generated by weighted luminance difference between the reference and distorted SCIs, we could eventually offer a MSEA similarity map for final index score. We have evaluated this model using a publicly accessible screen image database. Simulation results have shown that the MSEA similarity index correlates with the collected subjective mean opinion score (MOS) very well. In fact, it is ranked at the first place for both Pearson linear correlation coefficient (PLCC) and Root mean squared error (RMSE), and ranked at the second place for Spearman rank-order correlation coefficient (SROCC) measurements, among existing quality metrics.
机译:由于屏幕导向的应用的爆炸性增长,屏幕内容图像(SCI)占上风。这导致了对SCI质量评估和应用优化建模的广泛研究。在本文中,我们提出了完整的参考多尺度边缘注意(MSEA)相似性指数,以有效地测量屏幕图像的感知质量。该模型共同考虑了固定注意力,边缘结构和边缘对比度的感知影响,在观看屏幕图像时,可以精确地捕获我们人类视觉系统(HVS)的掩模现象(例如,频率选择性,亮度,对比度等)。具体而言,我们使用高斯和拉普拉斯金字塔的图像分解,然后使用该图像,然后用于导出边缘结构和边缘对比度图。与参考和扭曲的SCI之间的加权亮度差异一起产生的固定注意图,我们最终可以提供最终索引分数的MSEA相似性图。我们使用公开可访问的屏幕图像数据库进行了评估了此模型。仿真结果表明,MSEA相似性指数与收集的主观平均意见分数(MOS)相容。实际上,它是Pearson线性相关系数(PLCC)和根均方误差(RMSE)的第一个位置,并且在现有质量指标中排名第二位用于Spearman等级相关系数(SROCC)测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号