首页> 外文期刊>IEEE Transactions on Broadcasting >Bitrate-Based No-Reference Video Quality Assessment Combining the Visual Perception of Video Contents
【24h】

Bitrate-Based No-Reference Video Quality Assessment Combining the Visual Perception of Video Contents

机译:结合视频内容的视觉感知的基于比特率的无参考视频质量评估

获取原文
获取原文并翻译 | 示例

摘要

In video communication, the quality of video is mainly determined by bitrate in general. Moreover, the effect of video contents and their visual perception on video quality assessment (VQA) is often overlooked. However, in fact, for different videos, although the bitrates are the same, their VQA scores are still significantly different. Hence, it is assumed that the bitrate, video contents, and human visual characteristics mainly affect the VQA. Based on the above three aspects, in this paper, we designed a bitrate-based no-reference (NR) VQA metric combining the visual perception of video contents, namely, BRVPVC. In this metric, first an initial VQA model was proposed by only considering the bitrate alone. Then, the visual perception model for video contents was designed based on the texture complexity and local contrast of image, temporal information of video, and their visual perception features. Finally, two models were synthesized by adding certain weight coefficients into an overall VQA metric, namely, BRVPVC. Furthermore, ten reference videos and 150 distorted videos in the LIVE video database were used to test the metric. Moreover, based on the results of evaluating the videos in LIVE, VQEG, IRCCyN, EPFL-PoliMI, IVP, CSIQ, and Lisbon databases, the performance of BRVPVC is respectively compared with that of six full-reference (FR) metrics and ten NR VQA metrics. The results show that our VQA metric has a higher accuracy than six common FR VQA metrics and eight NR VQA metrics, and it is close to other two NR VQA metrics in accuracy. The corresponding values of Pearson linear correlation coefficient and Spearman rank order correlation coefficient reached 0.8547 and 0.8260, respectively. In addition, the computational complexity of proposed VQA metric is lower than video signal-to-noise ratio, video quality model, motion-based video integrity evaluation, spatiotemporal most apparent distortion, V-BLINDS, and V-CORNIA metrics. Moreover, the proposed metric has a better generalization property than these metrics.
机译:在视频通信中,视频质量通常主要由比特率决定。此外,视频内容及其视觉感知对视频质量评估(VQA)的影响通常被忽略。但是,实际上,对于不同的视频,尽管比特率相同,但它们的VQA得分仍然存在很大差异。因此,假定比特率,视频内容和人的视觉特性主要影响VQA。基于以上三个方面,本文设计了一种结合视频内容的视觉感知即BRVPVC的基于比特率的无参考(NR)VQA度量。在此度量标准中,首先仅考虑比特率就提出了初始VQA模型。然后,基于图像的纹理复杂度和局部对比度,视频的时间信息及其视觉感知特征,设计了视频内容的视觉感知模型。最后,通过将一定的权重系数添加到整体VQA度量标准BRVPVC中,合成了两个模型。此外,LIVE视频数据库中的十个参考视频和150个失真的视频用于测试该指标。此外,根据对LIVE,VQEG,IRCCyN,EPFL-PoliMI,IVP,CSIQ和Lisbon数据库中视频的评估结果,分别将BRVPVC的性能与六个全参考(FR)指标和十个NR的性能进行了比较。 VQA指标。结果表明,我们的VQA指标比六个常见的FR VQA指标和八个NR VQA指标具有更高的准确性,并且在准确性上接近其他两个NR VQA指标。 Pearson线性相关系数和Spearman秩相关系数的对应值分别达到0.8547和0.8260。此外,提出的VQA度量的计算复杂度低于视频信噪比,视频质量模型,基于运动的视频完整性评估,时空最明显失真,V-BLINDS和V-CORNIA度量。此外,所提出的度量比这些度量具有更好的泛化特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号