首页> 外文期刊>Brain-Computer Interfaces >Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network
【24h】

Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network

机译:卷积神经网络eeg电机图像分类中本地和全局空间模式的影响

获取原文
获取原文并翻译 | 示例

摘要

An emerging idea in electroencephalogram motor-imagery (EEG-MI) classification is the 'EEG-as-image' approach. It aims to capture local EEG signal dynamics by preserving the spatial relationships of EEG channels. We hypothesize that due to the global nature of EEG modulations, a better approach is to apply global unmixing filters.Using the BCI competition Ⅳ dataset 2a, we proposed three deep learning models: (1) one which applies multiple local spatial convolutions; (2) one which applies a global spatial convolution; and (3) a parallel architecture which combines both.Experiment results showed that the global model achieved an overall classification accuracy of 74.6% and outperformed the local and parallel architectures by 2.8% and 1.4%, respectively. It also outperformed the next best recorded result by 0.1 %.By exploring the impact of local and global spatial filters on EEG-MI classification, this paper helps to advance the study of EEG feature representation within a deep learning framework.
机译:脑电图电动成像(EEG-MI)分类中的新兴思路是“EEG-AS-IMACT”方法。它旨在通过保留EEG信道的空间关系来捕获本地EEG信号动态。我们假设由于EEG调制的全球性质,更好的方法是应用全球解密过滤器。使用BCI竞争ⅳDataSet 2a,我们提出了三种深度学习模型:(1)应用多个当地空间卷积的模型; (2)适用全球空间卷积的人; (3)相结合的并联架构。结果结果表明,全球型号达到了74.6%的整体分类精度,并分别优于本地和平行架构2.8%和1.4%。它还优于下一个最佳录制结果0.1%。根据探索本地和全球空间过滤器对eEg-mi分类的影响,本文有助于在深度学习框架内推进EEG特征表示的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号