首页> 外文期刊>Brain-Computer Interfaces >An active recursive state estimation framework for brain-interfaced typing systems
【24h】

An active recursive state estimation framework for brain-interfaced typing systems

机译:脑接口键入系统的活动递归状态估计框架

获取原文
获取原文并翻译 | 示例

摘要

Typing systems driven by noninvasive electroencephalogram (EEG)-based brain-computer interfaces (BCIs) can help people with severe communication disorders (including locked-in state) communicate. These systems mainly suffer from lack of sufficient accuracy and speed due to inefficient querying to surpass a hard pre-defined threshold. We introduce a novel recursive state estimation framework for BCI-based typing systems using active querying and stopping. Previously, we proposed a history-based objective called Momentum which is a function of posterior changes across sequences. In this paper, we first extend the definition of the Momentum, propose a unified framework that employs this extended Momentum objective both for querying and stopping. To provide a practical example, we employ a language-model-assisted EEG-based BCI typing system called RSVP Keyboard. Our results show that proposed framework on average improves the information transfer rate (ITR) and accuracy at least 52% and 8.7%, respectively, when compared to alternative approaches (random or mutual information).
机译:由非侵入性脑电图(EEG)驱动的键入系统 - 基于脑电脑接口(BCIS)可以帮助严重的通信障碍(包括锁定状态)通信的人。由于效率低效地超出了硬预定阈值,这些系统主要缺乏足够的准确性和速度。我们使用主动查询和停止介绍基于BCI的键入系统的新型递归状态估计框架。以前,我们提出了一种历史的目标,称为势势,这是序列后部的函数。在本文中,我们首先延长了势头的定义,提出了一个统一的框架,该框架采用这种扩展动量的目标用于查询和停止。为了提供一个实用的例子,我们采用了一种名为RSVP键盘的语言模型辅助eEg的BCI键入系统。我们的结果表明,与替代方法(随机或相互信息)相比,平均水平的框架分别提高了信息转移率(ITR)和准确性,至少52%和8.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号