首页> 外文期刊>BIT numerical mathematics >Numerical method with fractional splines for a subdiffusion problem
【24h】

Numerical method with fractional splines for a subdiffusion problem

机译:用于子拐区问题的分数样条的数值方法

获取原文
获取原文并翻译 | 示例

摘要

We consider a subdiffusion problem described by a time fractional Riemann-Liouville derivative of order 0 a 1. The main purpose of this work is to show how we can apply fractional splines of order 0 ss = 1 to approximate a fractional integral and hence how to solve the subdiffusion problem using this approach. To discuss the convergence of the numerical method we present the error bounds for the fractional splines and the fractional integral approximations and study the von Neumann stability analysis. We observe that, depending on the smoothness of the solution, the order of convergence will be affected by the values of a and ss. Numerical tests are presented along thework to highlight several properties of the fractional splines and the numerical tests in the end illustrate the performance of the numerical method.
机译:我们考虑由订单0 <1的主要目的进行的时间分数riemann-liouville衍生物描述了一个沉降问题因此,如何使用这种方法解决子边域问题。为了讨论数值方法的收敛,我们呈现分数样条的误差界限以及分数积分近似和研究von neumann稳定性分析。我们观察到,根据解决方案的平滑度,收敛顺序将受A和SS的值的影响。沿着“数值测试”介绍了突出了分数样条的几种性质,并且最终的数值测试说明了数值方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号