首页> 外文期刊>BIT numerical mathematics >FITTING PARAMETRIC CURVES AND SURFACES BY l_∞ DISTANCE REGRESSION
【24h】

FITTING PARAMETRIC CURVES AND SURFACES BY l_∞ DISTANCE REGRESSION

机译:通过l_∞距离回归拟合参数曲线和曲面

获取原文
获取原文并翻译 | 示例

摘要

For fitting curves or surfaces to observed or measured data, a common criterion is orthogonal distance regression. We consider here a natural generalization of a particular formulation of that problem which involves the replacement of least squares by the Chebyshev norm. For example, this criterion may be a more appropriate one in the context of accept/reject decisions for manufactured parts. The resulting problem has some interesting features: it has much structure which can be exploited, but generally the solution is not unique. We consider a method of Gauss-Newton type and show that if the non-uniqueness is resolved in a way which is consistent with a particular way of exploiting the structure in the linear subproblem, this can not only allow the method to be properly defined, but can permit a second order rate of convergence. Numerical examples are given to illustrate this.
机译:为了使曲线或表面适合观察或测量的数据,通常的标准是正交距离回归。我们在这里考虑该问题的一种特定表述的自然概括,涉及用切比雪夫范数替换最小二乘。例如,就制造零件的接受/拒绝决定而言,该准则可能是更合适的准则。由此产生的问题具有一些有趣的特征:它具有很多可以利用的结构,但是通常解决方案不是唯一的。我们考虑一种高斯-牛顿类型的方法,表明如果以与利用线性子问题中的结构的特定方式一致的方式解决非唯一性,则不仅可以正确定义该方法,但可以允许二阶收敛速度。数值例子说明了这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号