首页> 外文期刊>BIT numerical mathematics >Conservation of invariants by symmetric multistep cosine methods for second-order partial differential equations
【24h】

Conservation of invariants by symmetric multistep cosine methods for second-order partial differential equations

机译:二阶偏微分方程的对称多步余弦方法不变性守恒

获取原文
获取原文并翻译 | 示例

摘要

In a previous paper, some multistep cosine methods which integrate exactly the linear and stiff part of a second-order differential equation have been introduced and its convergence has been analysed under assumptions of regularity. In this paper, we characterize when this type of methods are symmetric and give a detailed analysis which allows to prove that these symmetric methods behave very advantageously with respect to the conservation of invariants when a Hamiltonian wave equation subject to periodic boundary conditions is integrated. In this way we prove that these methods are really competitive since they are explicit, stable and qualitatively correct for this type of equations.
机译:在先前的论文中,介绍了一些精确地整合了二阶微分方程的线性和刚性部分的多步余弦方法,并在正则性假设下分析了其收敛性。在本文中,我们表征了这种方法何时是对称的,并进行了详细分析,可以证明当对称周期边界条件下的哈密顿波动方程被积分时,这些对称方法在不变量守恒方面表现出非常有利的表现。通过这种方式,我们证明了这些方法确实具有竞争力,因为它们对于此类方程式是显式的,稳定的和定性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号