首页> 外文期刊>BIT numerical mathematics >Multilevel Monte Carlo method for parabolic stochastic partial differential equations
【24h】

Multilevel Monte Carlo method for parabolic stochastic partial differential equations

机译:抛物型随机偏微分方程的多级蒙特卡罗方法

获取原文
获取原文并翻译 | 示例

摘要

We analyze the convergence and complexity of multilevel Monte Carlo discretizations of a class of stochastic, parabolic equations driven by square integrable martingales. We show under low regularity assumptions on the solution that the judicious combination of low order Galerkin discretizations in space and an Euler-Maruyama discretization in time yields mean square convergence of order one in space and of order 1/2 in time to the expected value of the mild solution. The complexity of the multilevel estimator is shown to scale log-linearly with respect to the corresponding work to generate a single path of the solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on the finest mesh.
机译:我们分析了由平方可积mar驱动的一类随机抛物方程的多级蒙特卡洛离散的收敛性和复杂性。我们在解决方案的低规则性假设下表明,低阶空间Galerkin离散和时间Euler-Maruyama离散的明智组合会产生空间阶次和时间阶次1/2的均方收敛。温和的解决方案。相对于相应的工作,多级估计器的复杂度显示为对数线性缩放,以在最细的网格上生成求解的单个路径。最好的网格上相应的确定性抛物线问题的求解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号