首页> 外文期刊>BIT numerical mathematics >A remedy for the failure of the numerical steepest descent method on a class of oscillatory integrals
【24h】

A remedy for the failure of the numerical steepest descent method on a class of oscillatory integrals

机译:一类振荡积分上数值最速下降法失败的一种补救方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we demonstrate that the numerical method of steepest descent fails when applied in a straight forward fashion to the most commonly occurring highly oscillatory integrals in scattering theory. Through a polar change of variables, however, the integral can be reformulated so that it can be solved efficiently using a combination of oscillatory integration techniques and classical quadrature. The approach is described in detail and demonstrated numerically with some oscillatory integral examples. The numerical examples demonstrate that our approach avoids the failure in some special cases, such as in an acoustic scattering model oscillatory integral with observation point located in the illuminated region. This paves the way for using the framework of numerical steepest descent methods on a wider class of problems, like the 3D high frequency scattering from convex obstacles, up to now only handled in a satisfactory way by methods due to Ganesh and Hawkins (J Comp Phys 230:104-125, 2011).
机译:在本文中,我们证明了当以最直接的方式应用于散射理论中最常见的高度振荡积分时,最速下降的数值方法将失败。但是,通过变量的极性变化,可以重新构造积分,以便可以结合使用振荡积分技术和经典正交技术有效地求解积分。对该方法进行了详细描述,并通过一些振荡积分示例进行了数值演示。数值示例表明,我们的方法避免了在某些特殊情况下的失败,例如在与位于照明区域的观察点形成振荡的声散射模型中。这为在更广泛的问题上使用数值最速下降方法的框架铺平了道路,例如凸面障碍物的3D高频散射,到目前为止,只有Ganesh和Hawkins提出的方法才能以令人满意的方式进行处理(J Comp Phys 230:104-125,2011)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号