首页> 外文期刊>BIT numerical mathematics >A new iterative algorithm for mean curvature-based variational image denoising
【24h】

A new iterative algorithm for mean curvature-based variational image denoising

机译:基于平均曲率的变分图像去噪的新迭代算法

获取原文
获取原文并翻译 | 示例

摘要

The total variation semi-norm based model by Rudin-Osher-Fatemi (in Physica D 60, 259-268, 1992) has been widely used for image denoising due to its ability to preserve sharp edges. One drawback of this model is the so-called stair-casing effect that is seen in restoration of smooth images. Recently several models have been proposed to overcome the problem. The mean curvature-based model by Zhu and Chan (in SIAM J. Imaging Sci. 5(1), 1-32, 2012) is one such model which is known to be effective for restoring both smooth and nonsmooth images. It is, however, extremely challenging to solve efficiently, and the existing methods are slow or become efficient only with strong assumptions on the formulation; the latter includes Brito-Chen (SIAM J. Imaging Sci. 3(3), 363-389, 2010) and Tai et al. (SIAM J. Imaging Sci. 4(1), 313-344, 2011). Here we propose a new and general numerical algorithm for solving the mean curvature model which is based on an augmented Lagrangian formulation with a special linearised fixed point iteration and a nonlinear multigrid method. The algorithm improves on Brito-Chen (SIAM J. Imaging Sci. 3(3), 363-389, 2010) and Tai et al. (SIAM J. Imaging Sci. 4(1), 313-344, 2011). Although the idea of an augmented Lagrange method has been used in other contexts, both the treatment of the boundary conditions and the subsequent algorithms require careful analysis as standard approaches do not work well. After constructing two fixed point methods, we analyze their smoothing properties and use them for developing a converging multigrid method. Finally numerical experiments are conducted to illustrate the advantages by comparing with other related algorithms and to test the effectiveness of the proposed algorithms.
机译:Rudin-Osher-Fatemi(在Physica D 60,259-268,1992)中使用的基于全变分半范式的模型由于其保留锐利边缘的能力而被广泛用于图像去噪。该模型的一个缺点是在平滑图像的恢复中看到的所谓的阶梯框效应。最近,已经提出了几种模型来克服该问题。 Zhu和Chan提出的基于平均曲率的模型(在SIAM J. Imaging Sci。5(1),1-32,2012中)就是这样一种模型,已知它对于恢复平滑图像和非平滑图像都是有效的。然而,有效地解决是极富挑战性的,并且现有方法缓慢或仅在对配方有强烈假设的情况下才变得有效;后者包括Brito-Chen(SIAM J. Imaging Sci.3(3),363-389,2010)和Tai等。 (SIAM J.Imaging Sci.4(1),313-344,2011)。在此,我们提出了一种新的通用数值算法,用于求解平均曲率模型,该算法基于具有特殊线性化不动点迭代和非线性多重网格方法的增强拉格朗日公式。该算法在Brito-Chen(SIAM J. Imaging Sci.3(3),363-389,2010)和Tai等人的文章中进行了改进。 (SIAM J.Imaging Sci.4(1),313-344,2011)。尽管在其他情况下也使用了增强拉格朗日方法的思想,但由于标准方法无法很好地处理边界条件和后续算法,因此都需要仔细分析。在构造了两个定点方法之后,我们分析了它们的平滑特性,并将其用于开发收敛的多重网格方法。最后进行了数值实验,通过与其他相关算法进行比较来说明其优势,并测试了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号