首页> 外文期刊>BIT numerical mathematics >Efficient algorithm for simultaneous reduction to the m-Hessenberg-triangular-triangular form
【24h】

Efficient algorithm for simultaneous reduction to the m-Hessenberg-triangular-triangular form

机译:同时还原为m-Hessenberg-triangular-triangular形式的高效算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an efficient algorithm for simultaneous reduction of three matrices by using orthogonal transformations, where is reduced to -Hessenberg form, and and to triangular form. The algorithm is a blocked version of the algorithm described by Miminis and Paige (Int J Control 35:341-354, 1982). The -Hessenberg-triangular-triangular form of matrices , and is specially suitable for solving multiple shifted systems . Such shifted systems naturally occur in control theory when evaluating the transfer function of a descriptor system, or in interpolatory model reduction methods. They also arise as a result of discretizing the time-harmonic wave equation in heterogeneous media, or originate from structural dynamics engineering problems. The proposed blocked algorithm for the -Hessenberg-triangular-triangular reduction is based on aggregated Givens rotations, and is a generalization of the blocked algorithm for the Hessenberg-triangular reduction proposed by KAyengstrom et al. (BIT 48:563-584, 2008). Numerical tests confirm that the blocked algorithm is much faster than its non-blocked version based on regular Givens rotations only. As an illustration of its efficiency, two applications of the -Hessenberg-triangular-triangular reduction from control theory are described: evaluation of the transfer function of a descriptor system at many complex values, and computation of the staircase form used to identify the controllable part of the system.
机译:本文提出了一种有效的算法,该算法可通过使用正交变换同时还原为-Hessenberg形式和三角形形式来同时还原三个矩阵。该算法是Miminis和Paige(Int J Control 35:341-354,1982)描述的算法的封闭版本。矩阵的-Hessenberg-triangular-triangular形式,特别适合求解多位移系统。当评估描述符系统的传递函数时,这种偏移系统自然会在控制理论中出现,或者在插值模型约简方法中自然发生。它们也可能是由于在非均质介质中离散时谐波方程而产生的,或者源于结构动力学工程问题。所提出的-Hessenberg-三角形-三角形约简的阻塞算法是基于聚合的Givens旋转,并且是KAyengstrom等人提出的Hessenberg-三角形约简的阻塞算法的推广。 (BIT 48:563-584,2008)。数值测试证实,仅基于常规的Givens旋转,阻塞算法比其非阻塞版本要快得多。为了说明其效率,描述了控制理论中-Hessenberg-triangular-triangular约简的两个应用:在许多复数值上评估描述符系统的传递函数,以及计算用于识别可控部分的阶梯形式系统的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号