首页> 外文期刊>BIT numerical mathematics >Rigorous convergence analysis of alternating variable minimization with multiplier methods for quadratic programming problems with equality constraints
【24h】

Rigorous convergence analysis of alternating variable minimization with multiplier methods for quadratic programming problems with equality constraints

机译:具有等式约束的二次规划问题的交替变量最小化与乘子法的严格收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

We discuss unique solvability of the equality-constraint quadratic programming problem, establish a class of preconditioned alternating variable minimization with multiplier (PAVMM) methods for iteratively computing its solution, and demonstrate asymptotic convergence property of these PAVMM methods. We also discuss an algebraic derivation of the PAVMM method by making use of matrix splitting, which reveals that the PAVMM method is actually a modified block Gauss-Seidel iteration method for solving the augmented Lagrangian linear system resulting from the weighted Lagrangian function with respect to the equality-constraint quadratic programming problem.
机译:我们讨论了等式约束二次规划问题的唯一可解性,建立了一类带乘数的预变变量最小化(PAVMM)方法来迭代计算其解,并证明了这些PAVMM方法的渐近收敛性。我们还讨论了利用矩阵分裂的PAVMM方法的代数推导,这表明PAVMM方法实际上是一种改进的块Gauss-Seidel迭代方法,用于解决由加权Lagrangian函数引起的增强Lagrangian线性系统。等式约束二次规划问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号