首页> 外文期刊>BIT numerical mathematics >Composite symmetric general linear methods (COSY-GLMs) for the long-time integration of reversible Hamiltonian systems
【24h】

Composite symmetric general linear methods (COSY-GLMs) for the long-time integration of reversible Hamiltonian systems

机译:可逆哈密顿系统长时间积分的复合对称通用线性方法(COSY-GLM)

获取原文
获取原文并翻译 | 示例

摘要

In choosing a numerical method for the long-time integration of reversible Hamiltonian systems one must take into consideration several key factors: order of the method, ability to preserve invariants of the system, and efficiency of the computation. In this paper, 6th-order composite symmetric general linear methods (COSY-GLMs) are constructed using a generalisation of the composition theory associated with Runge–Kutta methods (RKMs). A novel aspect of this approach involves a nonlinear transformation which is used to convert the GLM to a canonical form in which its starting and finishing methods are trivial. Numerical experiments include efficiency comparisons to symmetric diagonally-implicit RKMs, where it is shown that COSY-GLMs of the same order typically require half the number of function evaluations, as well as long-time computations of both separable and non-separable Hamiltonian systems which demonstrate the preservation properties of the new methods.
机译:在选择一种用于可逆哈密顿系统的长期积分的数值方法时,必须考虑几个关键因素:方法的顺序,保留系统不变性的能力以及计算效率。在本文中,使用与Runge–Kutta方法(RKM)相关的组成理论的一般化方法,构造了六阶复合对称一般线性方法(COSY-GLM)。这种方法的一个新颖方面涉及到非线性变换,该变换用于将GLM转换为规范形式,在该规范形式中,其起始和完成方法很简单。数值实验包括对对称对角隐式RKM的效率比较,结果表明,相同阶次的COSY-GLM通常需要功能评估的一半,并且需要对可分离和不可分离的汉密尔顿系统进行长时间计算,展示新方法的保存特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号