首页> 外文期刊>Biomedical signal processing and control >Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions
【24h】

Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions

机译:使用小波分形描述符和自动相关偏差减少对皮肤病变进行分类的特征的最佳选择

获取原文
获取原文并翻译 | 示例

摘要

HighlightsDifferentiation of melanoma and benign nevi from dermoscopic images is proposed.Wavelet fractal descriptor characterizes the textural pattern of the skin lesions.Wavelet-fractal dimension measures the border irregularity.An automatic correlation bias reduction method selects the distinguishable features.AbstractThe non-invasive computerized image analysis techniques have a great impact on accurate and uniform evaluation of skin abnormalities. The paper reports a method for the texture and morphological feature extraction from skin lesion images to differentiate common melanoma from benign nevi. In this work, a 2D wavelet packet decomposition (WPD) based fractal texture analysis has been proposed to extract the irregular texture pattern of the skin lesion area. On the whole 6214 features have been extracted from each of the 4094 skin lesion images, by analyzing the textural pattern and morphological structure of the lesion area. For the identification of the most efficient feature set, an improved correlation bias reduction method has been introduced in combination with support vector machine recursive feature elimination (SVM-RFE). An automatic selection of correlation threshold value has been introduced in this proposed work to eliminate the correlation bias problem associated with SVM-RFE algorithm. With these selected features, the support vector machine (SVM) classifier with radial basis function is found to achieve the classification performance of 97.63% sensitivity, 100% specificity and 98.28% identification accuracy. The results show that the scheme presented in this paper surpasses the performance of the other state-of-the art techniques for the differentiation of melanoma from other skin abnormalities.
机译: 突出显示 建议从皮肤镜图像中区分黑色素瘤和良性痣。 小波分形描述符描述了皮肤病变的纹理模式。 < / ce:list-item> 小波分形维数测量边界不规则。 自动减少相关偏差的方法 摘要 非侵入性计算机图像分析技术对皮肤异常的准确,统一评估具有重大影响。本文报道了一种从皮肤病变图像中提取纹理和形态特征的方法,以区分普通黑色素瘤与良性痣。在这项工作中,已经提出了基于二维小波包分解(WPD)的分形纹理分析,以提取皮肤病变区域的不规则纹理图案。通过分析病变区域的纹理图案和形态结构,总共从4094个皮肤病变图像中提取了6214个特征。为了识别最有效的特征集,结合支持向量机递归特征消除(SVM-RFE),引入了一种改进的相关偏差减少方法。在这项提议的工作中引入了相关阈值的自动选择,以消除与SVM-RFE算法相关的相关偏差问题。利用这些选定的功能,发现具有径向基函数的支持向量机(SVM)分类器可实现97.63%的灵敏度,100%的特异性和98.28%的识别精度。结果表明,本文提出的方案优于其他先进技术,可将黑素瘤与其他皮肤异常区分开。 < / ce:抽象>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号