首页> 外文期刊>Biomedical signal processing and control >A novel method based on independent component analysis for brain MR image tissue classification into CSF, WM and GM for atrophy detection in Alzheimer's disease
【24h】

A novel method based on independent component analysis for brain MR image tissue classification into CSF, WM and GM for atrophy detection in Alzheimer's disease

机译:基于独立成分分析的脑MR图像组织分类为CSF,WM和GM的新方法,用于阿尔茨海默氏病的萎缩检测

获取原文
获取原文并翻译 | 示例

摘要

HighlightsImage Fusion based approach for generation of band images for Independent Component Analysis.Novel combination of different algorithms for automatic tissue classification of Brain MRI into CSF, WM and GM.Statistical quality analysis in various implementation stages of CAD system for atrophy detection in Alzheimer’s disease.100% accuracy for automatic tissue classification with implemented methodology for test samples under consideration.Validation of brain MRI tissue segmentation and classification results by the end user- neurologist/ radiologist.AbstractBrain Magnetic Resonance Image (MRI) plays a vital role in diagnosis of diseases like Brain Tumor, Alzheimer, Multiple Sclerosis, Schizophrenia and other White Matter Lesions. In most of the cases accurate segmentation of Brain MRI into tissue types like Cerebro-Spinal Fluid (CSF), White Matter (WM) and Grey Matter (GM) is of interest. The diagnostic accuracy of expert and non-expert Radiologists can be improved with accurate and automated tissue segmentation and classification system. Such system can also be used for trainees to understand the individual tissue distribution in MRI scans. In this paper, we propose a novel automated tissue segmentation and classification method based on Independent Component Analysis (ICA) with Band Expansion Process (BEP) and Support Vector Machine (SVM) classifier which with input as T1, T2 and Proton Density (PD) scans of patient, provides output as CSF, WM and GM indicating the possible atrophy in brain which can help in diagnosis of Alzheimer’s disease (AD). The objective of this work is to test the effectiveness of ICA with different input images generated using BEP for accurate brain tissue segmentation by validating results with different quality metrics. The novel method for generating input images for ICA has been implemented and segmented tissues are used for atrophy detection. The BEP+ICA+Thresholding+‘SVM trained with Grey Level Co-occurrence Matrix (GLCM) based texture features’ is giving 100% tissue classification accuracy for test samples under consideration.
机译: 突出显示 基于图像融合的方法生成带状图像以进行独立成分分析。 将脑部MRI自动组织分类为CSF,WM和GM。 用于老年痴呆症萎缩检测的CAD系统各个实施阶段的统计质量分析。 < ce:label>• 使用正在考虑中的测试样品的实施方法,对组织进行自动组织分类的准确度达到100%。 大脑MRI组织的验证最终用户-神经科医生/放射科医生进行的分割和分类结果。 < / ce:abstract> 摘要 脑磁共振图像(MRI)在诊断脑肿瘤,阿尔茨海默氏病,多发性硬化症,精神分裂症和其他白色物质病变等疾病中起着至关重要的作用。在大多数情况下,将脑MRI准确分为组织类型如脑脊髓液(CSF),白质(WM)和灰质(GM)感兴趣。准确和自动的组织分割和分类系统可以提高放射线专家和非放射线专家的诊断准确性。这种系统还可以用于受训人员了解MRI扫描中各个组织的分布。在本文中,我们提出了一种基于独立成分分析(ICA),带扩展过程(BEP)和支持向量机(SVM)分类器的,输入为T1,T2和质子密度(PD)的新型组织自动分类和分类方法。扫描患者,提供CSF,WM和GM的输出,表明脑部可能萎缩,有助于诊断老年痴呆症(AD)。这项工作的目的是通过使用不同的质量指标验证结果,以使用BEP生成的不同输入图像测试ICA的有效性,以进行准确的脑组织分割。已经实现了产生用于ICA的输入图像的新颖方法,并且将分割的组织用于萎缩检测。通过基于灰度共生矩阵(GLCM)的纹理特征进行训练的BEP + ICA + Thresholding +'SVM'可为正在考虑的测试样品提供100%的组织分类准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号