首页> 外文期刊>Biomedical signal processing and control >Performance assessment of a bleeding detection algorithm for endoscopic video based on classifier fusion method and exhaustive feature selection
【24h】

Performance assessment of a bleeding detection algorithm for endoscopic video based on classifier fusion method and exhaustive feature selection

机译:基于分类器融合方法和穷举特征选​​择的内窥镜视频出血检测算法性能评估

获取原文
获取原文并翻译 | 示例

摘要

HighlightsAn efficient bleeding detection system has been proposed based on a classifier fusion algorithm.Optimum training has been ensured by adopting a nested cross validation strategy.Robustness of the system has been improved by fusing multiple classifiers based on SVM score.Comparison with state-of-the-art algorithms validates the superiority of the proposed method for diverse dataset.AbstractCapsule Endoscopy (CE) is a non-invasive clinical procedure that allows examination of the entire gastrointestinal tract including parts of small intestine beyond the scope of conventional endoscope. It requires computer-aided approach for the assessment of video frames to reduce diagnosis time. This paper presents a computer-assisted method based on a classifier fusion algorithm which combines two optimized Support Vector Machine (SVM) classifiers to automatically detect bleeding regions present in CE frames. The classifiers are based on RGB and HSV color spaces; the image regions are characterized on the basis of statistical features derived from the first-order histogram probability of respective color channels. A nested cross validation strategy has been adopted for the parameter tuning and feature selection to optimize the classifiers. The optimum feature sets for the best performance are evaluated after exhaustive analysis. The proposed fusion approach achieves an average accuracy of 95%, sensitivity of 94% and specificity of 95.3% for a dataset of 8872 CE frames, which is higher than that obtained from a single classifier. Comparison with the state-of-the-art algorithms exhibits that the proposed method yields superior performance for diverse dataset.
机译: 突出显示 已经提出了一种基于分类器融合算法的有效出血检测系统。 通过采用嵌套的交叉验证策略,可以确保最佳培训。 通过基于SVM分数融合多个分类器,提高了系统的鲁棒性。 C先进的算法进行了比较,验证了所提出方法在各种数据集上的优越性。 < / ce:abstract-sec> 摘要 胶囊内窥镜(CE)是一种非侵入性的临床程序,可以检查整个胃肠道,包括部分小肠的检查超出了常规内窥镜的范围。它需要计算机辅助方法来评估视频帧,以减少诊断时间。本文提出了一种基于分类器融合算法的计算机辅助方法,该算法结合了两个优化的支持向量机(SVM)分类器来自动检测CE帧中出现的出血区域。分类器基于RGB和HSV颜色空间。根据从各个颜色通道的一阶直方图概率得出的统计特征来表征图像区域。嵌套交叉验证策略已用于参数调整和特征选择,以优化分类器。经过详尽分析后,将评估具有最佳性能的最佳功能集。对于8872个CE框架的数据集,所提出的融合方法实现了95%的平均准确度,94%的灵敏度和95.3%的特异性,高于从单个分类器获得的融合度。与最新算法的比较表明,该方法对于不同的数据集都具有优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号