首页> 外文期刊>Biomedical signal processing and control >An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter
【24h】

An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter

机译:使用经验模式分解和自适应切换均值滤波器的高效ECG去噪方法

获取原文
获取原文并翻译 | 示例

摘要

HighlightsA new improved ECG denoising method based on EMD and ASMF is proposed.The described technique avoids the rejection of initial IMFs or utilization of window-based approaches.A detailed qualitative and quantitative analysis has been carried out using standard MIT-BIH ECG database.An in-depth study of the result suggests the superiority of the proposed denoising methodology.AbstractElectrocardiogram (ECG) is a widely employed tool for the analysis of cardiac disorders. A clean ECG is often desired for proper treatment of cardiac ailments. However, in the real scenario, ECG signals are corrupted with various noises during acquisition and transmission. In this article, an efficient ECG denoising methodology using combined empirical mode decomposition (EMD) and adaptive switching mean filter (ASMF) is proposed. The advantages of both EMD and ASMF techniques are exploited to reduce the noises in the ECG signals with minimum distortion. Unlike conventional EMD based techniques, which reject the initial intrinsic mode functions (IMFs) or utilize a window based approach for reducing high-frequency noises, here, a wavelet based soft thresholding scheme is adopted for reduction of high-frequency noises and preservation of QRS complexes. Subsequently, an ASMF operation is performed to enhance the signal quality further. The ECG signals of standard MIT-BIH database are used for the simulation study. Three types of noises in particular white Gaussian noise, Electromyogram (EMG) and power line interference contaminate the test ECG signals. Three standard performance metrics namely output SNR improvement, mean square error, and percentage root mean square difference measure the efficacy of the proposed technique at various signal to noise ratio (SNR). The proposed denoising methodology is compared with other existing ECG denoising approaches. A detail qualitative and quantitative study and analysis indicate that the proposed technique can be used as an effective tool for denoising of ECG signals and hence can serve for better diagnostic in computer-based automated medical system.
机译: 突出显示 提出了一种新的基于EMD和ASMF的改进的ECG去噪方法。 所描述的技术避免了拒绝初始IMF或使用基于窗口的方法。 已使用标准MIT-BIH ECG数据库进行了详细的定性和定量分析。 对结果的深入研究表明,所提出的去噪方法具有优越性。 摘要 心电图(ECG)是广泛用于分析心脏疾病的工具。通常需要使用干净的ECG来正确治疗心脏疾病。但是,在实际情况下,ECG信号在采集和传输期间会受到各种噪声的破坏。本文提出了一种结合经验模式分解(EMD)和自适应切换均值滤波器(ASMF)的有效ECG去噪方法。利用EMD和ASMF技术的优势,以最小的失真降低ECG信号中的噪声。与传统的基于EMD的技术拒绝初始固有模式函数(IMF)或利用基于窗口的方法来减少高频噪声不同,这里采用基于小波的软阈值方案来减少高频噪声并保留QRS复合体。随后,执行ASMF操作以进一步提高信号质量。标准MIT-BIH数据库的ECG信号用于仿真研究。三种类型的噪声,特别是高斯白噪声,肌电图(EMG)和电源线干扰会污染测试的ECG信号。三种标准性能指标,即输出SNR改善,均方误差和均方根差百分比,衡量了该技术在各种信噪比(SNR)下的功效。将拟议的降噪方法与其他现有的ECG降噪方法进行了比较。详细的定性和定量研究与分析表明,该技术可以作为一种有效的ECG信号降噪工具,可以为基于计算机的自动医疗系统中更好的诊断提供依据。 ce:abstract-sec>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号