首页> 外文期刊>Biomedical signal processing and control >Gender classification on digital dental x-ray images using deep convolutional neural network
【24h】

Gender classification on digital dental x-ray images using deep convolutional neural network

机译:深卷积神经网络数字牙科X射线图像的性别分类

获取原文
获取原文并翻译 | 示例

摘要

Human teeth are more durable in nature and tend to survive even after the death of a person. For this reason, teeth play a momentous role in the forensic department to identify a missing or dead person. Gender discrimination is also a key process in forensic analysis. However, designing an automated dental gender estimation based on deep learning techniques still needs more research efforts. This paper proposed an algorithm to estimate the gender of a human from dental x-ray image (DXI). It consists of three steps namely pre-processing, segmentation, and gender classification. In the initial step, the DXI is denoised to remove the unwanted noises such as Gaussian, speckle, and impulse using a prime magic square filter. In the second step, the gradient-based recursive thresholding segmentation is used to segment the denoised DXI. At the final stage, the image is classified using the Resnet50 deep convolutional neural network classification algorithm. The database of 1000 dental images has taken and divided into 600 training samples and 400 testing samples during experimental evaluation. Various performance measures of the proposed segmentation and classification method are evaluated. The proposed system has achieved 98.27% of classification accuracy. Moreover, the performance of the proposed work is compared with similar existing methods. It shows that the proposed system produced better results. Therefore, the proposed gender classification system supports the dentist in forensic applications to record the dental post mortem details in case of a big disaster.
机译:人类的牙齿在自然界中更耐用,即使在一个人的死亡之后,也往往会存活。出于这个原因,牙齿在法医部门发挥着重要作用,以识别失踪或死亡的人。性别歧视也是法医分析的关键过程。然而,根据深度学习技术设计自动牙科性别估计仍然需要更多的研究工作。本文提出了一种算法来估计来自牙科X射线图像(DXI)的人的性别。它包括三个步骤即预处理,分割和性别分类。在初始步骤中,DXI被剥去以消除使用Prime Magic Square滤波器的不需要的噪声,例如高斯,散斑和脉冲。在第二步中,基于梯度的递归阈值分割用于对去噪的DXI进行分割。在最终阶段,使用Reset50深卷积神经网络分类算法分类图像。在实验评估期间,1000次牙科图像数据库已经拍摄并分为600个训练样本和400个测试样本。评估了所提出的分割和分类方法的各种性能测量。拟议的系统已经实现了98.27%的分类准确性。此外,将所提出的工作的性能与类似现有方法进行比较。它表明,所提出的系统产生了更好的结果。因此,拟议的性别分类系统支持法医申请中的牙医,以便在大灾难中记录牙科后验尸细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号