首页> 外文期刊>Biomedical signal processing and control >Classification of Obstructive Sleep Apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks
【24h】

Classification of Obstructive Sleep Apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks

机译:使用卷积神经和长短期内存网络从单引主ECG信号进行阻塞性睡眠呼吸暂停的分类

获取原文
获取原文并翻译 | 示例

摘要

Obstructive Sleep Apnoea (OSA) is a breathing disorder that happens during sleep. Polysomnography (PSG) is typically used as a reference standard for the diagnosis of OSA which uses different physiological signals such as Electrocardiography (ECG), Electroencephalogram (EEG) and Electromyogram (EMG) in a sleep laboratory. This procedure is time-consuming, expensive and inconvenient. However, detection of OSA by using a wearable sensor to collect Electrocardiography (ECG) signals is a practical and effective alternative. Previous studies of OSA classification from ECG signals focused on feature engineering methods which involves extracting specific features from ECG signals and using the extracted feature as inputs to the machine learning methods. In this study, we propose a novel method of OSA classification of ECG signal where deep learning methods automatically extract the features from the ECG signals and classify them. Our deep learning approach uses a hybrid model involving Convolution Neural Networks (CNN) and Long Short Term Memory (LSTM) networks. PhysioNet Apnea-ECG database is used for training and evaluation of our proposed deep learning model. For the released training dataset, our proposed model achieves the accuracy of 94.27%, sensitivity of 94.57%, specificity of 93.93% and F1 score of 95.41%. While for the testing dataset, the achieved accuracy, sensitivity, specificity and F1 score for the proposed model are 90.92%, 91.24%, 90.36% and 92.76% respectively. The performance of our model is compared with state of the art techniques and we found our model to achieve the best performance to classify OSA and health ECG signals.
机译:阻塞性睡眠呼吸暂停(OSA)是在睡眠期间发生的呼吸障碍。多元摄制(PSG)通常用作诊断OSA的参考标准,其使用不同的生理信号,例如心电图(ECG),脑电图(EEG)和静电实验室电灰度(EMG)。此程序是耗时,昂贵和不方便的。然而,通过使用可穿戴传感器来收集心电图(ECG)信号的OSA检测是一种实用且有效的替代方案。以前从ECG信号分类的研究专注于特征工程方法,涉及从ECG信号中提取特定功能并使用提取的功能作为机器学习方法的输入。在本研究中,我们提出了一种新颖的ESA分类的MECG信号的分类方法,其中深度学习方法自动提取来自ECG信号的特征并对它们进行分类。我们的深度学习方法使用涉及卷积神经网络(CNN)和长短期内存(LSTM)网络的混合模型。 PhysioIonet Apnea-ECG数据库用于培训和评估我们所提出的深度学习模式。对于释放培训数据集,我们提出的模型可实现94.27%,灵敏度为94.57%,特异性为93.93%,F1得分为95.41%。在测试数据集的同时,所拟议模型的达到精度,灵敏度,特异性和F1分数分别为90.92%,91.24%,90.36%和92.76%。我们模型的性能与最先进的技术进行了比较,我们发现我们的模型来实现对OSA和Health ECG信号进行分类的最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号