首页> 外文期刊>Biomedical signal processing and control >Recognizing drowsiness in young men during real driving based on electroencephalography using an end-to-end deep learning approach
【24h】

Recognizing drowsiness in young men during real driving based on electroencephalography using an end-to-end deep learning approach

机译:在使用端到端深度学习方法的基于脑电图的实际驾驶期间识别年轻人的嗜睡

获取原文
获取原文并翻译 | 示例

摘要

It is widely agreed that driving while drowsy is a severe threat to road safety. Therefore, in this work, we present a novel approach that does not require manual selection of feature sets and then delivers them to the classifier, using deep learning theory and convolutional neural network (ConvNets) to automatically detect driver drowsiness based on multi-channel EEG signals during real driving. The proposed 12-layer deep ConvNets model automatically learns and extracts the most prominent features from the raw EEG data through 5 convolutional layers, 3 max pooling layers and 1 mean pooling layer and optimizes the classification results through 3 fully connected layers at the same time, which is an end-to-end manner. To overcome the lack of a large amount of EEG data, a data augmentation strategy is proposed. The proposed deep ConvNets model is trained on 4 s segments of EEG data from different participants and tested using a 10-fold cross validation. It gave an accuracy, precision, sensitivity, specificity, and mean f-measure of 97.02 % +/- 0.0177, 96.74 % +/- 0.0347, 97.76 % +/- 0.0168, 96.22 % +/- 0.0426, and 97.19 % +/- 0.0157, respectively on the testing data set and outperforms the state -of-the-art systems, which proved the good generalization performance of the deep model. Considering that the proposed model can learn features from the data without using specialized feature extraction and classification methods, ConvNets may be considered as an alternative for similar detections based on EEG signals such as operators fatigue in navigation, construction industry, etc.
机译:广泛同意驾驶,而昏昏欲睡是对道路安全的严重威胁。因此,在这项工作中,我们提出了一种新的方法,不需要手动选择特征集,然后使用深度学习理论和卷积神经网络(ConverNets)将它们传送到分类器基于多通道EEG自动检测驱动器困难实际驾驶期间的信号。提出的12层深扫描模型自动学习并从原始EEG数据通过5卷积层,3个最大池层和1个平均池层提取最突出的特征,并同时通过3个完全连接的层优化分类结果,这是端到端的方式。为了克服大量脑电图数据,提出了一种数据增强策略。所提出的深度扫描模型在不同参与者的4次EEG数据的4段中培训并使用10倍交叉验证测试。它提供了精度,精确度,敏感性,特异性和平均值,平均值为97.02%+/- 0.0177,96.74%+/- 0.0347,97.76%+/- 0.0168,96.22%+/- 0.0426,97.19%+ / - 0.0157分别在测试数据集和优于现有技术的状态,证明了深度模型的良好泛化性能。考虑到所提出的模型可以在不使用专业特征提取和分类方法的情况下学习来自数据的功能,可以将扫描集视为基于导航,建筑业等操作员疲劳的eEG信号的类似检测的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号