首页> 外文期刊>Biomedical signal processing and control >Multi-class segmentation of skin lesions via joint dictionary learning
【24h】

Multi-class segmentation of skin lesions via joint dictionary learning

机译:通过联合字典学习的皮肤病患者多级分割

获取原文
获取原文并翻译 | 示例

摘要

Melanoma is the deadliest type of human skin cancer. However, it is curable if diagnosed in an early stage. Recently, computer aided diagnosis (CAD) systems have drawn much interests. Segmentation is a crucial step of a CAD system. There are different types of skin lesions having high similarities in terms of color, shape, size and appearance. Most available works focus on a binary segmentation. Due to the huge variety of skin lesions and high similarities between different types of lesions, multi-class segmentation is still a challenging task. Here, we propose a method based on joint dictionary learning for multi-class segmentation of dermoscopic images. The key idea is based on combining data from different feature spaces to build a more informative structure. We consider training data from two different spaces. Then, two dictionaries are jointly learned using the K-SVD algorithm. The final segmentation is accomplished by a graph-cut method based on both the topological infor-mation of lesions and the learned dictionaries. We evaluate our proposed method on the ISIC 2107 dataset to segment three classes of lesions. Our method achieves better results, specially for challenging skin lesions, compared to the only available method for multi-class segmentation of dermoscopic images. We also evaluate the performance of our method for binary segmentation and lesion diagnosis and compared the results with the other state-of-the-art methods. Experimental results show the efficiency and effectiveness of the proposed method in producing results that are more reliable for clinical applications, even using limited amount of training data.
机译:黑色素瘤是最致命的人体皮肤癌。但是,如果在早期阶段诊断,它是可治愈的。最近,计算机辅助诊断(CAD)系统绘制了很多兴趣。分割是CAD系统的关键步骤。在颜色,形状,尺寸和外观方面存在不同类型的皮肤病变。最多可用的作品侧重于二进制细分。由于各种皮肤病变和不同类型病变之间的高相似性,多级分割仍然是一个具有挑战性的任务。在这里,我们提出了一种基于联合字典学习的方法,了解DerMicopic图像的多级分割。关键的想法是基于组合来自不同特征空间的数据来构建更具信息性的结构。我们考虑从两个不同的空间训练数据。然后,使用K-SVD算法共同学习两个词典。最终分割是通过基于病变的拓扑信息和学习词典的图形切割方法来实现。我们在ISIC 2107数据集上评估我们提出的方法,以分段为三类病变。与唯一的DerMicopic图像的多阶级分割的可用方法相比,我们的方法达到了更好的结果,特别是皮肤病患者。我们还评估了我们对二元分割和病变诊断方法的性能,并将结果与​​其他最先进的方法进行了比较。实验结果表明,所提出的方法在生产临床应用中更可靠的结果的效率和有效性,即使使用有限的培训数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号