首页> 外文期刊>Biomedical signal processing and control >An intelligent computer-aided diagnosis approach for atrial fibrillation detection based on multi-scale convolution kernel and Squeeze-and-Excitation network
【24h】

An intelligent computer-aided diagnosis approach for atrial fibrillation detection based on multi-scale convolution kernel and Squeeze-and-Excitation network

机译:基于多尺度卷积核和挤出励磁网络的心房颤动检测智能计算机辅助诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Atrial fibrillation (AF) is a most common arrhythmia with high morbidity and mortality. However, the conventional detection of AF is time-consuming and laborious because it is mainly completed by physician's visual inspection of electrocardiogram (ECG). Thus, it is essential to build the intelligent computer-aided diagnosis system strategy for AF detection. In this work, we present a novel intelligent approach based on the multi-scale convolution kernel (MCK) and Squeeze-and-Excitation network (SENet) for AF detection. The model not only is able to overcome the limitations that exist in the single-scale convolution kernel of traditional convolution neural network (CNN), but also explicitly establish the inter-dependences between the extracted feature channels and screen out the critical ECG features for AF signals recognition, thus improving the model performance. The results demonstrate that the proposed model achieves noticeable performance improvements with the accuracy of 98.3% and 97.5% using a subject-independent validation scheme on the two public databases. Besides, the corresponding ablation experiments show the effectiveness of the proposed MCK strategy. To our knowledge, this is the first time to redesign the convolution kernel in traditional CNN for AF detection, while showing its great potential as an auxiliary tool to help physicians.
机译:心房颤动(AF)是一种最常见的心律失常,具有高发病率和死亡率。然而,AF的传统检测是耗时和费力的,因为它主要由医生的电磁图(ECG)的目视检查完成。因此,必须为AF检测构建智能计算机辅助诊断系统策略。在这项工作中,我们提出了一种基于多尺度卷积内核(MCK)和挤压和激励网络(Senet)的新颖智能方法,用于AF检测。该模型不仅能够克服传统卷积神经网络(CNN)的单尺度卷积内核中存在的限制,而且还明确地建立了提取的特征通道之间的互相依赖性,并筛选了AF的关键心电图功能信号识别,从而提高了模型性能。结果表明,拟议的模型在两个公共数据库上使用主题验证计划的准确性为98.3%和97.5%的准确性。此外,相应的消融实验表明了所提出的MCK策略的有效性。为了我们的知识,这是第一次重新设计传统CNN中的卷积内核,用于AF检测,同时表现出它作为帮助医生的辅助工具的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号