首页> 外文期刊>Journal of VLSI signal processing systems for signal, image, and video technology >Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection
【24h】

Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection

机译:基于卡尔曼的光谱 - 时间ECG分析使用深度卷积网络进行心房颤动检测

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a novel ECG classification framework for atrial fibrillation (AF) detection using spectro-temporal representation (i.e., time varying spectrum) and deep convolutional networks. In the first step we use a Bayesian spectro-temporal representation based on the estimation of time-varying coefficients of Fourier series using Kalman filter and smoother. Next, we derive an alternative model based on a stochastic oscillator differential equation to accelerate the estimation of the spectro-temporal representation in lengthy signals. Finally, after comparative evaluations of different convolutional architectures, we propose an efficient deep convolutional neural network to classify the 2D spectro-temporal ECG data. The ECG spectro-temporal data are classified into four different classes: AF, non-AF normal rhythm (Normal), non-AF abnormal rhythm (Other), and noisy segments (Noisy). The performance of the proposed methods is evaluated and scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experimental results show that the proposed method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms.
机译:在本文中,我们提出了一种新的ECG分类框架,用于使用光谱 - 时间表示(即时间变化频谱)和深卷积网络检测心房颤动(AF)检测。在第一步中,我们使用基于使用卡尔曼滤波器和更顺畅的傅里叶系列的时变系数的估计贝叶斯光谱 - 时间表示。接下来,我们基于随机振荡器微分方程推导出一种替代模型,以加速冗长信号中的光谱 - 时间表示的估计。最后,在不同卷积架构的比较评估之后,我们提出了一个有效的深度卷积神经网络来分类2D光谱时间ECG数据。 ECG Spectro-Temporal数据被分类为四种不同的类:AF,非AF正常节奏(正常),非AC异常节奏(其他)和嘈杂的段(嘈杂)。评估所提出的方法的性能和对心脏病学(CINC)2017数据集的物理仪/计算进行评估和评分。实验结果表明,该方法的总体F1得分为80.2%,符合最先进的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号