首页> 外文期刊>Biomedical signal processing and control >Iterative envelope mean fractal dimension filter for the separation of crackles from normal breath sounds
【24h】

Iterative envelope mean fractal dimension filter for the separation of crackles from normal breath sounds

机译:迭代包络平均分形尺寸滤波器,用于普通呼吸声分离噼啪声

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method of separating pulmonary crackles from normal breath sounds: the iterative envelope mean fractal dimension (IEM-FD) filter. Crackles are an important physiological parameter for evaluating lung condition of an individual and their automatic separation from normal breath sounds can provide an objective way of diagnosing or monitoring different cardiopulmonary diseases. The filter combines the new iterative envelope mean (IEM) method with the established fractal dimension (FD) technique. The IEM method estimates the non-stationary and stationary parts of the lung sound signal and then the FD technique is applied to the estimated non-stationary output of the IEM method for further refining the separation process. The IEM-FD filter is tested using a publicly available dataset and, compared with an established crackle separation technique. The IEM-FD achieves high accuracy for crackle detection in the presence of noise with SNR = -1 dB for fine crackles and SNR +1 dB for coarse crackles, and has low computational cost, with minimal under- or over-estimation and good preservation of crackle morphology. The method is shown to have an overall performance suitable for automated analysis to determine accurately the number and characteristics of pulmonary crackles in a recorded lung sound.
机译:本文提出了一种从正常呼吸声分离肺裂纹的新方法:迭代包络平均分形尺寸(IEM-FD)过滤器。裂纹是用于评估个体的肺状况的重要生理学参数,并且它们与正常呼吸声的自动分离可以提供诊断或监测不同心肺疾病的客观方式。该过滤器将新的迭代包络(IEM)方法与已建立的分形维数(FD)技术相结合。 IEM方法估计肺部声音信号的非静止和固定部件,然后将FD技术应用于IEM方法的估计的非静止输出,以进一步精炼分离过程。与已建立的噼啪声分离技术相比,使用公共数据集进行测试IEM-FD滤波器。 IEM-FD在SNR&GT的噪声存在下实现裂纹检测的高精度; = -1dB用于细裂纹和SNR>致粗裂纹+1 dB,计算成本低,具有最小化或过度估计,良好的裂纹形态保存。该方法显示为适合于自动分析的整体性能,以准确地确定记录的肺部肺裂纹的数量和特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号