首页> 外文期刊>Biomedical signal processing and control >Dynamic PET reconstruction using the kernel method with non-local means denoising
【24h】

Dynamic PET reconstruction using the kernel method with non-local means denoising

机译:使用非本地手段去噪使用内核方法的动态宠物重建

获取原文
获取原文并翻译 | 示例

摘要

Non-local means with a spatiotemporal search window (NLM-ST) has been developed to denoise dynamic positron emission tomography (PET) images. The improved image quality, however, may not be good enough to generate reliable parametric images. In this work, we propose an iterative reconstruction algorithm which aims to improve the quality of dynamic PET images by incorporating NLM-ST denoising directly within the kernelized expectation-maximization (KEM) reconstruction algorithm. Since the NLM-ST denoising was employed after each KEM update, the proposed algorithm was called NLM-ST-AU-KEM. Computer simulations were conducted to evaluate the performance of the proposed reconstruction algorithm, and the results were compared to KEM with a post-reconstruction NLM-ST denoising filter (KEM + NLM-ST). The root mean squared errors (RMSE) of the dynamic PET images reconstructed using the KEM algorithm were increased after 40 iterations. Both the NLM-ST-AU-KEM and the KEM + NLM-ST methods could achieve stable RMSE values after 50 iterations, but the former had lower RMSE values. Compared to the proposed NLM-ST-AU-KEM method, the KEM + NLM-ST method tended to over-smooth dynamic PET images and parametric images. For K1 and Ki, the proposed NLMST-AU-KEM method had lower bias but higher variance than the KEM + NLM-ST method. For k2 and k3, the proposed NLM-ST-AU-KEM method had higher variance than the KEM + NLM-ST method, but the higher variance could be reduced by applying a kernel-based post-filtering method to the NLM-ST-AU-KEM-generated parametric images. NLM-ST denoising during image reconstruction seems to be a better strategy than that after image reconstruction.
机译:已经开发出使用时空搜索窗口(NLM-ST)的非本地手段,以便Denoise动态正电子发射断层扫描(PET)图像。然而,改善的图像质量可能不足以产生可靠的参数图像。在这项工作中,我们提出了一种迭代重建算法,该算法旨在通过直接在内核期望最大化(KEM)重建算法内结合NLM-St Denoising来提高动态PET图像的质量。由于在每个KEM更新后使用NLM-ST去噪,所以该算法称为NLM-ST-AU-KEM。进行计算机模拟以评估所提出的重建算法的性能,并将结果与​​KEM进行比较,具有重建后NLM-ST去噪过滤器(KEM + NLM-ST)。在40次迭代之后,使用KEM算法重建的动态PET图像的根平均平方误差(RMSE)增加。 NLM-ST-AU-KEM和KEM + NLM-ST方法都可以在50次迭代后实现稳定的RMSE值,但前者具有较低的RMSE值。与所提出的NLM-ST-AU-KEM方法相比,KEM + NLM-ST方法倾向于过度平滑的动态PET图像和参数图像。对于K1和Ki,所提出的NLMST-AU-KEM方法具有较低的偏置,但比KEM + NLM-ST方法更高。对于K2和K3,所提出的NLM-ST-AU-KEM方法具有比KEM + NLM-ST方法更高的方差,但是通过将基于内核的后滤波方法应用于NLM-ST-,可以减少更高的方差AU-KEM生成的参数图像。在图像重建期间的NLM-ST去噪似乎是图像重建后的更好的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号