首页> 外文期刊>Biomedical signal processing and control >Assessment of flourishing levels of individuals by using resting-state fNIRS with different functional connectivity measures
【24h】

Assessment of flourishing levels of individuals by using resting-state fNIRS with different functional connectivity measures

机译:通过使用不同功能连接措施的静态FNIR评估个体繁华水平的评估

获取原文
获取原文并翻译 | 示例

摘要

Flourishing is an important criterion for assessing well-being, however, controversy remains, especially while assessing it with self-report measures. Therefore, to understand the underlying neural mechanisms of well-being, researchers often use neuroimaging techniques. However, previous neuroimaging studies using conventional statistical approaches provided answers in an average sense rather than individual answers. In this study, we used machine learning algorithms to classify highly flourishing from normally flourishing individuals using a publicly available resting-state functional near-infrared spectroscopy (rs-fNIRS) dataset collected from 43 participants to obtain an answer for individual level. We utilized both the Pearson's correlation (CC) and the Dynamic Time Warping (DTW) algorithm to estimate functional connectivity matrices from the rs-fNIRS data on the temporo-parieto-occipital region and used them as input for machine learning algorithms. Our results showed that we were able to classify flourishing individuals with 90 % accuracy with AUC 0.90 and 0.93 using Nearest Neighbor and Radial Basis Kernel Support Vector Machine using oxyhemoglobin concentration change with Pearson's correlation (CC - Delta HbO) and deoxy hemoglobin concentration change with dynamic time warping (DTW - Delta Hb). This finding suggests that temporo-parieto-occipital region-based resting-state functional connectivity might be a potential biomarker to identify the levels of flourishing and using both connectivity measures might allow us to find different potential biomarkers.
机译:繁荣是评估福祉的重要标准,但仍然存在争议,特别是在评估其与自我报告措施。因此,要了解幸福的潜在的神经机制,研究人员经常使用神经影像学技术。然而,先前使用常规统计方法的神经影像学研究以平均意义而不是单个答案提供了答案。在这项研究中,我们使用从43名参与者收集的公共休息状态近红外光谱(RS-FNIR)数据集来分类机器学习算法,从通常繁荣的人中,从43名参与者收集的公共休息状态近红外光谱(RS-Fnirs)数据集以获得个人级别的答案。我们利用Pearson的相关性(CC)和动态时间翘曲(DTW)算法来估计来自RS-FNIRS数据的功能连接矩阵,并将它们用作机器学习算法的输入。我们的研究结果表明,使用最近的邻居和径向基础核心基础核心支持向量机使用氧气的相关性(CC - Delta HBO)和动态脱氧血红蛋白浓度变化时间翘曲(dtw - delta hb)。该发现表明,颞下枕区的休息状态功能连接可能是潜在的生物标志物,以识别繁荣和使用两个连接措施的水平可能让我们找到不同的潜在生物标志物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号