首页> 外文期刊>Biomedical signal processing and control >Neuro-evolutionary approach for optimal selection of EEG channels in motor imagery based BCI application
【24h】

Neuro-evolutionary approach for optimal selection of EEG channels in motor imagery based BCI application

机译:基于电机图像的BCI应用中EEG通道最佳选择的神经进化方法

获取原文
获取原文并翻译 | 示例

摘要

The selection of relevant channels that produces optimal subset of electroencephalogram (EEG) features is of prime importance for i) reducing computational complexity, ii) reducing overfitting, and iii) eliminating inconveniences in users during clinical application. In the analysis of EEG signals acquired directly from the scalp, feature extraction and classification techniques play a key role in motor imagery based brain-computer interface (BCI) system. Typically, the high-density EEG system used in this process is composed of 64 or more channels for EEG signal recordings. However, in practical applications, fewer channels are required for the system set up. Thus, for the current study, we aim to determine the optimal number of channels for the BCI system. We propose a channel selection strategy known as neuro-evolutionary algorithm, which is based on modified particle swarm optimization (MPSO), coupled with feature extraction by common spatial pattern. To validate the proposed method, we performed experiments using 64 channel EEG recordings from four trans-humeral amputees. The acquired signals from five motor imagery tasks were fed into a wrapper based neuro-evolutionary framework after the extraction stage. The performance results of the MPSO, when compared with other models like ant colony, genetic algorithm, particle swarm optimization and simulated annealing, demonstrate the superiority of MPSO as the best performance with the most significant results. Further validation with electrocorticogram (ECoG) dataset IV of the BCI competition showed that the proposed model outperformed other commonly used methods by significantly decreasing the error rate and the number of EEG channels.
机译:选择产生最佳脑电图(EEG)特征子集的相关信道的选择是I)减少计算复杂性,ii)减少过度装备和III)在临床应用期间消除用户的不便。在直接从头皮上获取的EEG信号的分析中,特征提取和分类技术在基于电机图像的脑电脑接口(BCI)系统中起着关键作用。通常,在该过程中使用的高密度EEG系统由64个或更多个用于EEG信号记录的通道组成。但是,在实际应用中,系统设置需要更少的通道。因此,对于目前的研究,我们的目标是确定BCI系统的最佳通道数。我们提出了一种称为神经进化算法的频道选择策略,其基于修改的粒子群优化(MPSO),通过共同的空间图案与特征提取耦合。为了验证所提出的方法,我们使用来自四个跨肱骨术语的64个通道EEG录音进行实验。从五个电动机图像任务中获取的信号被送入基于包裹物的提取阶段的神经进化框架。与蚁群,遗传算法,粒子群优化和模拟退火等其他模型相比,MPSO的性能结果将MPSO的优越性展示了最重要的结果。 BCI竞赛的电加电图(ECOG)数据集IV的进一步验证表明,通过显着降低误差率和脑电图的数量,所提出的模型优于其他常用的方法。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102621.1-102621.16|共16页
  • 作者单位

    Chinese Acad Sci Shenzhen Inst Adv Technol Key Lab Human Machine Intelligence Synergy Syst 1068 Xueyuan Ave Shenzhen 518055 Peoples R China|Univ Chinese Acad Sci Shenzhen Coll Adv Technol Shenzhen 518055 Peoples R China|Shenzhen Engn Lab Neural Rehabil Technol Shenzhen 518055 Peoples R China;

    Lagos State Univ Ojo Lagos Nigeria;

    Thammasat Univ Sch ICT Sirindhorn Int Inst Technol Bangkok Thailand;

    Chinese Acad Sci Shenzhen Inst Adv Technol Key Lab Human Machine Intelligence Synergy Syst 1068 Xueyuan Ave Shenzhen 518055 Peoples R China|Univ Chinese Acad Sci Shenzhen Coll Adv Technol Shenzhen 518055 Peoples R China|Shenzhen Engn Lab Neural Rehabil Technol Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Key Lab Human Machine Intelligence Synergy Syst 1068 Xueyuan Ave Shenzhen 518055 Peoples R China|Univ Chinese Acad Sci Shenzhen Coll Adv Technol Shenzhen 518055 Peoples R China|Shenzhen Engn Lab Neural Rehabil Technol Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Key Lab Human Machine Intelligence Synergy Syst 1068 Xueyuan Ave Shenzhen 518055 Peoples R China|Univ Chinese Acad Sci Shenzhen Coll Adv Technol Shenzhen 518055 Peoples R China|Shenzhen Engn Lab Neural Rehabil Technol Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Key Lab Human Machine Intelligence Synergy Syst 1068 Xueyuan Ave Shenzhen 518055 Peoples R China|Univ Chinese Acad Sci Shenzhen Coll Adv Technol Shenzhen 518055 Peoples R China|Shenzhen Engn Lab Neural Rehabil Technol Shenzhen 518055 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brain-computer interface (BCI); Channel selection; Evolutionary algorithms (EAs); Motor imagery; Neuroevolution; Sensory feedback;

    机译:脑电脑界面(BCI);频道选择;进化算法(EAS);电机图像;神经发展;感官反馈;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号