首页> 外文期刊>Biomedical signal processing and control >Combining Gabor energy with equilibrium optimizer algorithm for multi-modality medical image fusion
【24h】

Combining Gabor energy with equilibrium optimizer algorithm for multi-modality medical image fusion

机译:将Gabor能量与均衡优化器算法相结合,多种式医学图像融合

获取原文
获取原文并翻译 | 示例

摘要

Medical image fusion is a technique of extracting information from multiple image modalities and combining them to create a single image with the aim of improving the image content and preserving information. Until now, many approaches have been introduced to enhance efficiency in medical image fusion. Nevertheless, there are still limitations to the fusion of the low and high-frequency coefficients of several current methods to our current knowledge. The first limitation is that the output images often lose detailed information because high-frequency coefficients can be fused by ineffective rules. The second limitation is the deterioration of the resulting image luminance when the low-frequency coefficients are fused by the average rule. In this study, we propose a novel method to overcome the limitations mentioned above, and this approach is described by several steps as follows. Firstly, the discrete stationary wavelet transform (DSWT) method is used to convert input images into high and low-frequency components. Secondly, a rule based on maximum Gabor energy (MGE) is introduced to fusing high-frequency coefficients, which allows important information to be preserved in the resulting image. Thirdly, low-frequency coefficients are fused by optimal parameters based on the equilibrium optimizer algorithm (EOA). This fusion rule ensures the resulting image has good quality. In order to verify our approach's effectiveness, we have used six image quality indexes and the latest five medical image fusion methods for comparison. The experimental results show that the proposed approach has overcome the disadvantages of some current methods.
机译:医学图像融合是从多个图像模型中提取信息的技术,并将它们组合以创建单个图像,目的是提高图像内容和保留信息。到目前为止,已经引入了许多方法以提高医学图像融合的效率。然而,仍有局限性对我们当前知识的几种当前方法的低频系数和高频系数的融合。第一个限制是输出图像经常丢失详细信息,因为可以通过无效规则融合高频系数。第二个限制是当通过平均规则融合低频系数时所得到的图像亮度的劣化。在这项研究中,我们提出了一种克服上述限制的新方法,并且这种方法由以下几个步骤描述。首先,离散固定小波变换(DSWT)方法用于将输入图像转换为高频率分量。其次,将基于最大Gabor能量(MGE)的规则引入熔合高频系数,这允许在所得到的图像中保留重要信息。第三,基于均衡优化器算法(EOA),通过最优参数融合低频系数。该融合规则确保所得到的图像具有良好的质量。为了验证我们的方法的有效性,我们使用了六种图像质量指标和最新的五种医学图像融合方法进行比较。实验结果表明,该方法克服了一些目前方法的缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号