首页> 外文期刊>Biomedical signal processing and control >Level set segmentation with shape prior knowledge using intrinsic rotation, translation and scaling alignment
【24h】

Level set segmentation with shape prior knowledge using intrinsic rotation, translation and scaling alignment

机译:使用内在旋转,翻译和缩放对齐方式,通过形状先前知识进行级别分割

获取原文
获取原文并翻译 | 示例

摘要

Level set segmentation has been successfully used in several image applications. However, they perform poorly when applied to severely corrupted images or when the object's boundaries are blurred or occluded. Poor performance can be improved by introducing shape prior knowledge into the segmentation process by considering additional shape information from training examples. This can be achieved by adding a regularization term that penalizes shapes that differ from those learned from a training database. This regularizer must be invariant under translation, rotation and scaling transformations. Previous works have proposed coupling the curve evolution to a registration problem through an optimization procedure. This approach is slow and its results depend on how this optimization is implemented. An alternative approach introduced an intrinsic alignment, which normalizes each shape to be compared on a common coordinate system, avoiding the registration process. Nevertheless, the proposed intrinsic alignment considered only scaling and translation but not rotation, which is critical in several image applications. In this paper we present a new method to incorporate shape prior knowledge based on the intrinsic alignment approach, but extending it for scaling, translation and rotation invariance. Our approach uses a regularization term based on the eigenvalues and eigenvectors of the covariance matrix of each training shape, and this eigendecomposition dependency leads to a new set of evolution equations. We tested our regularizer, combined with Chan-Vese, in 2D and 3D synthetic and medical images, demonstrating the effectiveness of using shape priors with intrinsic scaling, translation and rotation alignment in different segmentation problems.
机译:级别设置分段已成功用于多个图像应用程序。然而,当应用于严重损坏的图像或当物体的边界被模糊或遮挡时,它们的表现不佳。通过考虑来自训练示例的附加形状信息,可以通过在分割过程中引入分割过程来提高性能不佳。这可以通过添加正规化术语来实现惩罚与从培训数据库中学到的那些不同的形状。此规则器必须在翻译,旋转和缩放变换下不变。以前的作品已经提出通过优化过程将曲线演变耦合到注册问题。这种方法很慢,其结果取决于如何实现该优化。替代方法引入了一个固有的对齐,其在公共坐标系上判定要比较的每个形状,避免登记过程。尽管如此,所提出的内在对齐仅考虑了缩放和翻译,而不是旋转,这在若干图像应用中至关重要。在本文中,我们提出了一种基于内在对准方法的新方法,以便延长缩放,翻译和旋转不变性的形状先验知识。我们的方法基于每个训练形状的协方差矩阵的特征值和特征向量来使用正则化术语,并且该实际分解依赖性导致一组新的演化方程。我们测试了我们的常规器,与Chan-Vese,在2D和3D合成和医学图像中结合,展示了使用形状前置具有内在缩放,翻译和旋转对准的有效性在不同的分割问题中。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102241.1-102241.16|共16页
  • 作者单位

    Pontificia Univ Catolica Chile Biomed Imaging Ctr Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Cardiovasc Magnet Resonance Santiago Chile;

    Pontificia Univ Catolica Chile Biomed Imaging Ctr Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Cardiovasc Magnet Resonance Santiago Chile|Pontificia Univ Catolica Chile Inst Biol & Med Engn Santiago Chile|Pontificia Univ Catolica Chile Inst Math & Computat Engn Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Discovery Struct Complex Data Santiago Chile;

    Pontificia Univ Catolica Chile Biomed Imaging Ctr Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Cardiovasc Magnet Resonance Santiago Chile|Univ Tecn Federico Santa Maria Dept Mech Engn Santiago Chile;

    Pontificia Univ Catolica Chile Biomed Imaging Ctr Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Cardiovasc Magnet Resonance Santiago Chile|Pontificia Univ Catolica Chile Inst Biol & Med Engn Santiago Chile|Pontificia Univ Catolica Chile Dept Elect Engn Santiago Chile;

    Pontificia Univ Catolica Chile Biomed Imaging Ctr Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Cardiovasc Magnet Resonance Santiago Chile|Pontificia Univ Catolica Chile Sch Med Radiol Dept Santiago Chile;

    Pontificia Univ Catolica Chile Biomed Imaging Ctr Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Cardiovasc Magnet Resonance Santiago Chile|Pontificia Univ Catolica Chile Sch Med Radiol Dept Santiago Chile;

    Pontificia Univ Catolica Chile Biomed Imaging Ctr Santiago Chile|ANID Millennium Sci Initiat Program Millennium Nucleus Cardiovasc Magnet Resonance Santiago Chile|Pontificia Univ Catolica Chile Dept Elect Engn Santiago Chile;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image segmentation; Level sets; Prior knowledge; Pose invariance; Intrinsic alignment;

    机译:图像分割;级别;先验知识;构成不变性;内在对齐;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号