首页> 外文期刊>Biomedical signal processing and control >Robust heart sound segmentation based on spectral change detection and genetic algorithms
【24h】

Robust heart sound segmentation based on spectral change detection and genetic algorithms

机译:基于光谱变化检测和遗传算法的强大心声分割

获取原文
获取原文并翻译 | 示例

摘要

Listening to cardiac sounds can quickly provide information about the functioning of the heart. The heart sound signal, also known as the phonocardiogram (PCG), plays an essential role in automatic auscultation. Segmentation of the PCG signal into its fundamental parts can significantly facilitate any further analysis. In this work, we propose a new method that segments the PCG into fundamental heart sounds and silences. This method can be divided into two stages: Detection and Selection. In the first stage, a function whose maxima indicate the presence of sound events is generated based on the calculation of the spectral flux, a measure of how quickly the spectrum of the PCG signal is changing with respect to time. In the second stage, the position of the beginning and termination of the fundamental heart sounds is detected by analyzing and selectively choosing the time positions of the maxima in the detection function. This selection is solved as an optimization problem through the estimation of an ideal detection function, whose solution is found using two genetic algorithms: a simple genetic algorithm (SGA) and differential evolution (DE). The proposed method was evaluated using the PhysioNet/CinC Challenge dataset, comprising more than 3,000 PCGs. Our results exhibit a mean F-1 score of 87.5% and 93.6% for the SGA and DE variants, respectively. The proposed system is robust and highly modular, which simplifies the reuse of specific parts to evaluate algorithm variants. The implementation of the proposed method is available as open-source software.
机译:听着心声可以快速提供有关心脏功能的信息。心声信号,也称为音盲(PCG),在自动听诊中起重要作用。 PCG信号分割成其基本部位可以显着促进任何进一步的分析。在这项工作中,我们提出了一种新的方法,将PCG分成基本心脏声音和沉默。该方法可分为两个阶段:检测和选择。在第一阶段,基于频谱通量的计算,产生最大值的函数,其最大值是基于频谱通量的计算产生的,这是PCG信号频谱相对于时间改变的快速变化的量度。在第二阶段,通过分析和选择性地选择检测功能中最大值的时间位置来检测到基本心脏声音的开始和终止的位置。通过估计理想的检测函数,将该选择解决了优化问题,其使用两个遗传算法(SGA)和差分演进(DE)来发现其解决方案。使用包含超过3,000pcg的物理仪/ CINC挑战数据集来评估所提出的方法。我们的结果分别表现出平均F-1分数为87.5%和93.6%的SGA和DE变体。所提出的系统是坚固且高度模块化的,这简化了特定部分的重用来评估算法变量。所提出的方法的实现可用作开源软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号