首页> 外文期刊>Biomedical signal processing and control >Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets
【24h】

Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets

机译:在IMBalanced ECG数据集上使用混合CNN-LSTM网络的自动心房颤动检测

获取原文
获取原文并翻译 | 示例

摘要

Atrial fibrillation is a heart arrhythmia strongly associated with other heart-related complications that can increase the risk of strokes and heart failure. Manual electrocardiogram (ECG) interpretation for its diagnosis is tedious, time-consuming, requires high expertise, and suffers from inter- and intra-observer variability. Deep learning techniques could be exploited in order for robust arrhythmia detection models to be designed. In this paper, we propose a novel hybrid neural model utilizing focal loss, an improved version of cross-entropy loss, to deal with training data imbalance. ECG features initially extracted via a Convolutional Neural Network (CNN) are input to a Long Short-Term Memory (LSTM) model for temporal dynamics memorization and thus, more accurate classification into the four ECG rhythm types, namely normal (N), atrial fibrillation (AFIB), atrial flutter (AFL) and AV junctional rhythm (J). The model was trained on the MIT-BIH Atrial Fibrillation Database and achieved a sensitivity of 97.87%, and specificity of 99.29% using a ten-fold cross-validation strategy. The proposed model can aid clinicians to detect common atrial fibrillation in real-time on routine screening ECG.
机译:心房颤动是一种与其他心脏相关的并发症强烈相关的心脏心律失常,这可能会增加中风和心力衰竭的风险。手动心电图(ECG)对其诊断的解释是乏味,耗时的令人疑惑,需要高专业知识,并且受到间歇性和观察者内的变异性。可以利用深度学习技术,以便设计强大的心律失常检测模型。在本文中,我们提出了一种新的混合神经模型利用焦点损失,改进的跨熵损失版本,处理培训数据不平衡。最初通过卷积神经网络(CNN)提取的ECG特征被输入到时间动态记忆的长短期存储器(LSTM)模型,从而更准确地分类为四种ECG节奏类型,即正常(N),心房颤动(AFIB),心房颤动(AFL)和AV结节律(J)。该模型在MIT-BIH心房颤动数据库上培训,使用10倍交叉验证策略实现了97.87%的敏感性,99.29%的特异性。该拟议的模型可以帮助临床医生在实时检测常见的心房颤动在常规筛查ECG上。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102194.1-102194.9|共9页
  • 作者单位

    Aristotle Univ Thessaloniki Lab Comp Med Informat & Biomed Imaging Technol Thessaloniki Greece;

    Aristotle Univ Thessaloniki Lab Comp Med Informat & Biomed Imaging Technol Thessaloniki Greece;

    Aristotle Univ Thessaloniki Lab Comp Med Informat & Biomed Imaging Technol Thessaloniki Greece;

    Aristotle Univ Thessaloniki Lab Comp Med Informat & Biomed Imaging Technol Thessaloniki Greece;

    Northwestern Univ Dept Elect & Comp Engn Evanston IL USA|Northwestern Univ Dept Mat Sci Evanston IL 60208 USA;

    Northwestern Univ Dept Elect & Comp Engn Evanston IL USA|Northwestern Univ Dept Mat Sci Evanston IL 60208 USA;

    Northwestern Univ Dept Elect & Comp Engn Evanston IL USA;

    Aristotle Univ Thessaloniki Lab Comp Med Informat & Biomed Imaging Technol Thessaloniki Greece|Northwestern Univ Dept Elect & Comp Engn Evanston IL USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    atrial fibrillation; arrhythmia detection; CNN; LSTM; focal loss;

    机译:心房颤动;心律失常检测;CNN;LSTM;焦点;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号