首页> 外文期刊>Biomedical signal processing and control >A deep learning algorithm using contrast-enhanced computed tomography (CT) images for segmentation and rapid automatic detection of aortic dissection
【24h】

A deep learning algorithm using contrast-enhanced computed tomography (CT) images for segmentation and rapid automatic detection of aortic dissection

机译:一种使用对比度增强的计算机断层扫描(CT)图像进行分段和快速自动检测主动脉夹层的深度学习算法

获取原文
获取原文并翻译 | 示例

摘要

Aortic dissection (AD) is one of the most common aortic diseases, where blood enters the aortic wall through the aortic intimal rift and causes separation of the arterial wall. Any delay or misdiagnosis can have severe consequences for patients with aortic dissection and even lead to higher mortality rates. Therefore, rapid and accurate detection of aortic dissection saves patients valuable time and provides assistance for the selection of clinical treatment options. This paper describes a deep learning algorithm that uses contrast-enhanced CT images for segmentation and automatic detection of aortic dissection. First, we construct a U-Net based semantic segmentation architecture and apply it to contrast-enhanced CT images to segment the aortic true lumen. Then, we use the segmentation results for aortic circularity analysis to obtain slice-level detection results. Finally, we aggregated the slice-level results to present patient-level detection results. We tested our algorithm on 20 contrast-enhanced CT datasets, of which 10 were aortic dissections. In terms of temporal performance, we have achieved millisecond prediction on sliced images. At the same time, we achieved 85.00% accuracy, 90.00% sensitivity and 80.00% specificity in patient-level testing.
机译:主动脉夹层(AD)是最常见的主动脉疾病之一,血液通过主动脉内膜裂缝进入主动脉壁并导致动脉壁的分离。任何延迟或误诊会对主动脉夹层患者具有严重后果,甚至导致更高的死亡率。因此,快速和准确地检测主动脉夹层可节省有价值的时间,并为选择临床治疗方案提供帮助。本文介绍了一种深入学习算法,它使用对比度增强的CT图像进行分段和自动检测主动脉夹层。首先,我们构建基于U-Net的语义分段架构,并将其应用于对比增强的CT图像以段分割主动脉真管。然后,我们使用分段结果进行主动脉循环分析以获得切片级检测结果。最后,我们汇总了切片级结果以呈现患者级检测结果。我们在20个对比度增强的CT数据集上测试了我们的算法,其中10个是主动脉夹层。在时间性能方面,我们已经达到了切片图像的毫秒预测。与此同时,我们的准确度为85.00%,灵敏度为90.00%和80.00%的患者级测试特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号