首页> 外文期刊>Biomedical signal processing and control >Detection of apnea events from ECG segments using Fourier decomposition method
【24h】

Detection of apnea events from ECG segments using Fourier decomposition method

机译:使用傅立叶分解方法检测来自ECG段的APNEA事件

获取原文
获取原文并翻译 | 示例

摘要

Absence of airflow in breathing during sleep for more than 10 s is known as sleep apnea. It causes low oxygen levels in the blood which may lead to many cardiovascular problems. Current methods of detection are rather time-consuming and expensive. Automated detection using electrocardiogram (ECG) signal is seen as a promising and efficient method for the identification of sleep apnea events. In this paper, the single-lead ECG signal is divided into 1-min segments, and separated into frequency bands using Fourier decomposition method. From these signal components, features like mean absolute deviation and entropy are computed to classify the ECG segments using machine learning algorithms. The proposed method yields an accuracy of 92.59%, sensitivity of 89.70%, specificity of 94.67% and precision of 91.27% on MIT PhysioNet Apnea-ECG dataset, using a support vector machine (SVM) classifier with the Gaussian kernel. The strength of the proposed method has been verified on two more datasets, namely MIT-BIH polysomnography and University College Dublin sleep apnea database (UCDDB). The classification results are compared with the existing state-of-the-art techniques to demonstrate the superior performance of the proposed method. Proposed methodology is implemented using the fast Fourier transform (FFT) which makes it computationally efficient and can be used for real-time sleep apnea detection. (C) 2020 Elsevier Ltd. All rights reserved.
机译:睡眠期间呼吸呼吸缺失超过10秒的气流被称为睡眠呼吸暂停。它导致血液中的低氧水平可能导致许多心血管问题。目前的检测方法相当耗时和昂贵。使用心电图(ECG)信号的自动检测被视为识别睡眠呼吸暂停事件的有希望和有效的方法。在本文中,单引灯ECG信号被分成1分钟的段,并使用傅立叶分解方法分离成频段。根据这些信号组件,计算平均绝对偏差和熵等特征以使用机器学习算法对ECG段进行分类。该方法的精度为92.59%,灵敏度为89.70%,特异性为94.67%,精度在MIT Physionet Apnea-ECG数据集中,使用带有高斯内核的支持向量机(SVM)分类器91.27%。所提出的方法的强度已经在另外两个数据集,即MIT-BIH多面组和大学都柏林Dublin Sleep Apnea数据库(UCDDB)上进行了验证。将分类结果与现有的最先进技术进行比较,以证明所提出的方法的卓越性能。使用快速傅里叶变换(FFT)来实现提出的方法,这使得它计算得高效并且可用于实时睡眠APNEA检测。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号