首页> 外文期刊>Biomedical signal processing and control >Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer's disease
【24h】

Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer's disease

机译:机器学习方法的性能应用于诊断阿尔茨海默病的结构MRI和ADAS认知评分

获取原文
获取原文并翻译 | 示例

摘要

Early detection of Alzheimer's disease (AD) using structural magnetic resonance images is essential for early treatment that can slow the progression of the disease. Therefore, there is a need for accurate computer-aided-diagnosis (CAD) systems for detecting AD. The purpose of this work is to evaluate the degree to which specific features - including fractals obtained from MRI-based surfaces of the cerebral cortex, cortical thickness, gyrification index and the Alzheimer's disease assessment scale (ADAS) cognitive test scores - are informative for classifying AD patients and healthy control subjects using several machine learning classifiers. Our results show that a Support Vector Machine (SVM) trained with cortical thickness, gyrification index and ADAS cognitive test scores distinguishes between AD and healthy control subjects better than other machine learning methods and other feature combinations. This specific CAD system achieved ideal accuracy and outperformed recently proposed systems. (C) 2018 Published by Elsevier Ltd.
机译:使用结构磁共振图像的早期检测阿尔茨海默病(AD)对于早期治疗至关重要,可以减缓疾病的进展。因此,需要精确的计算机辅助诊断(CAD)系统来检测广告。这项工作的目的是评估特定特征的程度 - 包括从脑皮质的MRI的脑皮层,皮质厚度,气化指数和阿尔茨海默病评估规模(ADAS)认知测试分数的基于MRI的表面分形 - 是对分类的信息使用多种机器学习分类器的AD患者和健康对照受试者。我们的结果表明,用皮质厚度培训的支持向量机(SVM),Gyrification指数和ADA认知测试得分培训,比其他机器学习方法和其他特征组合更好地区分广告和健康控制受试者。该特定的CAD系统实现了理想的准确性和最近提出的系统。 (c)2018年由elestvier有限公司发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号