首页> 外文期刊>Biomedical signal processing and control >Wavelet-based computationally-efficient computer-aided characterization of liver steatosis using conventional B-mode ultrasound images
【24h】

Wavelet-based computationally-efficient computer-aided characterization of liver steatosis using conventional B-mode ultrasound images

机译:基于小波的计算上有效的计算机辅助计算机辅助使用传统B模式超声图像的肝脏脂肪化的表征

获取原文
获取原文并翻译 | 示例

摘要

Hepatic steatosis occurs when lipids accumulate in the liver leading to steatohepatitis, which can evolve into cirrhosis and consequently may end with hepatocellular carcinoma. Several automatic classification algorithms have been proposed to detect liver diseases. However, some algorithms are manufacturer-dependent, while others require extensive calculations and consequently prolonged computational time. This may limit the development of real-time and manufacturer-independent computer-aided detection of liver steatosis. This work demonstrates the feasibility of a computationally-efficient and manufacturer-independent wavelet-based computer-aided liver steatosis detection system using conventional B-mode ultrasound (US) imaging. Seven features were extracted from the approximation part of the second-level wavelet packet transform (WPT) of US images. The proposed technique was tested on two datasets of ex-vivo mice livers with and without gelatin embedding, in addition to a third dataset of in-vivo human livers acquired using two different US machines. Using the gelatin-embedded mice liver dataset, the technique exhibited 98.8% accuracy, 97.8% sensitivity, and 100% specificity, and the frame classification time was reduced from0.4814s using original US images to 0.1444s after WPT preprocessing. When the other mice liver dataset was used, the technique showed 85.74% accuracy, 84.4% sensitivity, and 88.5% specificity, and the frame classification time was reduced from 0.5612s to 0.2903s. Using human liver image data, the best classifier exhibited 92.5% accuracy, 93.0% sensitivity, 91.0% specificity, and the classification time was reduced from 0.660s to 0.146s. This technique can be useful for developing computationally-efficient and manufacturer-independent noninvasive CAD systems for fatty liver detection. (C) 2019 Elsevier Ltd. All rights reserved.
机译:当脂质在导致脱脂肝炎的肝脏积聚时,会发生肝脏脂肪变性,这可以进化到肝硬化,因此可以以肝细胞癌结束。已经提出了几种自动分类算法来检测肝脏疾病。然而,一些算法是制造的依赖性,而其他算法需要大量的计算,从而长时间的计算时间。这可能会限制实时和制造商无关的计算机辅助检测肝脏脂肪变性的发展。这项工作展示了使用常规B模式超声(US)成像的计算上高效和基于制造商独立的小波基计算机辅助肝脏脂肪变性检测系统的可行性。从美国图像的第二级小波分组变换(WPT)的近似部分中提取了七个特征。除了使用两种不同的美国机器获得的体内人类肝脏的第三个数据集之外,还测试了所提出的技术在exmo-vivo小鼠肝脏的两种数据集上进行测试,而没有明胶嵌入。使用明胶嵌入的小鼠肝脏数据集,该技术表现出98.8%的精度,灵敏度为97.8%和100%特异性,并且在WPT预处理后,使用原始美国图像到0.1444s的0.4814S减少了帧分类时间。当使用其他小鼠肝脏数据集时,该技术表现出85.74%的精度,灵敏度84.4%和88.5%,框架分类时间从0.5612减少到0.2903s。使用人肝图像数据,最佳分级器表现出92.5%的精度,灵敏度为93.0%,特异性为91.0%,分类时间从0.660s降至0.146s。该技术可用于开发用于脂肪肝检测的计算效率和无关的非侵入性CAD系统。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号