首页> 外文期刊>Biomedical signal processing and control >Convolutional neural network approach for automatic tympanic membrane detection and classification
【24h】

Convolutional neural network approach for automatic tympanic membrane detection and classification

机译:卷积神经网络方法用于鼓膜自动检测和分类

获取原文
获取原文并翻译 | 示例

摘要

Otitis media (OM) is a term used to describe the inflammation of the middle ear. The clinical inspection of the tympanic membrane is conducted visually by experts. Visual inspection leads to limited variability among the observers and includes human-induced errors. In this study, we sought to solve these problems using a novel diagnostic model based on a faster regional convolutional neural network (Faster R-CNN) for tympanic membrane detection, and pre-trained CNNs for tympanic membrane classification. The experimental study was conducted on a new eardrum dataset. The Faster R-CNN was initially applied to the original images. The number of images in the dataset was subsequently increased using basic image augmentation techniques such as flip and rotation. We also evaluated the success of the model in the presence of various noise effects. The original and automatically extracted tympanic membrane patches were finally input separately to the CNNs. The AlexNet, VGGNets, GoogLeNet, and ResNets models were employed. This resulted in an average precision of 75.85% in the tympanic membrane detection. All CNNs in the classification produced satisfactory results, with the proposed approach achieving an accuracy of 90.48% with the VGG-16 model. This approach can potentially be used in future otological clinical decision support systems to increase the diagnostic accuracy of the physicians and reduce the overall rate of misdiagnosis. Future studies will focus on increasing the number of samples in the eardrum dataset to cover a full range of ontological conditions. This would enable us to realize a multi-class classification in OM diagnosis. (C) 2019 Elsevier Ltd. All rights reserved.
机译:中耳炎(OM)是用于描述中耳发炎的术语。鼓膜的临床检查由专家目测进行。目视检查导致观察者之间的变化有限,并且包括人为错误。在这项研究中,我们试图使用一种新型诊断模型解决这些问题,该模型基于用于鼓膜检测的快速区域卷积神经网络(Faster R-CNN)和用于鼓膜分类的预训练CNN。实验研究是在一个新的耳膜数据集上进行的。 Faster R-CNN最初应用于原始图像。随后使用基本的图像增强技术(例如翻转和旋转)增加了数据集中的图像数量。我们还评估了在各种噪声影响下该模型的成功性。最后将原始的和自动提取的鼓膜贴片分别输入到CNN中。使用了AlexNet,VGGNets,GoogLeNet和ResNets模型。这使得鼓膜检测的平均准确度达到75.85%。该分类中的所有CNN都产生了令人满意的结果,使用VGG-16模型,该方法的准确性达到了90.48%。这种方法可能会在未来的耳科临床决策支持系统中使用,以提高医师的诊断准确性并降低总体误诊率。未来的研究将集中于增加鼓膜数据集中的样本数量,以涵盖整个本体论条件。这将使我们能够在OM诊断中实现多类分类。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号