首页> 外文期刊>Biomedical signal processing and control >A high-precision arrhythmia classification method based on dual fully connected neural network
【24h】

A high-precision arrhythmia classification method based on dual fully connected neural network

机译:基于双重全连接神经网络的高精度心律失常分类方法

获取原文
获取原文并翻译 | 示例

摘要

As an important arrhythmia detection method, the electrocardiogram (ECG) can directly reflect abnormalities in cardiac physiological activity. In view of the difficulty in the diagnosis of arrhythmia in different people, automatic arrhythmia detection methods have been studied in previous works. In this paper, we present a dual fully-connected neural network model for accurate classification of heartbeats. Our method is following the AAMI inter-patient standard, which includes normal beats (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and unknown beats (Q). Firstly, a total of 105 features are extracted from the preprocessed signals. Then, a two-layer classifier is introduced in the classification stage. Each layer contains two independent fully-connected neural networks, and the threshold criterion is also added in the second layer. For verification, both the MIT arrhythmia database (MITDB) and the MIT supraventricular arrhythmia database (SVDB) were adopted. The experiments demonstrate that the proposed method has high performance for arrhythmia detection. It also achieves high sensitivity for class S and V, which can easily detect potentially abnormal heartbeats. Furthermore, the proposed method can interfere with the classification effect for a certain disease and have more advantages in dataset size when comparing a convolutional neural network (CNN). Once properly trained, the proposed method can be employed as a tool to automatically detect arrhythmia from ECG.
机译:作为一种重要的心律失常检测方法,心电图(ECG)可以直接反映心脏生理活动的异常。鉴于不同人心律失常的诊断困难,在先前的工作中已经研究了自动心律失常检测方法。在本文中,我们提出了一个双重完全连接的神经网络模型,用于心跳的准确分类。我们的方法遵循AAMI患者标准,包括正常搏动(N),室上异位搏动(S),心室异位搏动(V),融合搏动(F)和未知搏动(Q)。首先,从预处理信号中提取总共105个特征。然后,在分类阶段引入了两层分类器。每层包含两个独立的完全连接的神经网络,并且阈值标准也添加到第二层中。为了进行验证,同时采用了MIT心律失常数据库(MITDB)和MIT室上性心律失常数据库(SVDB)。实验表明,该方法具有很好的心律失常检测性能。它还对S级和V级实现了高灵敏度,可以轻松检测潜在的异常心跳。此外,与卷积神经网络(CNN)进行比较时,所提出的方法可能会干扰特定疾病的分类效果,并且在数据集大小方面具有更多优势。一旦经过适当培训,建议的方法可以用作自动检测心电图心律不齐的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号