首页> 外文期刊>Biomedical signal processing and control >3D right ventricular endocardium segmentation in cardiac magnetic resonance images by using a new inter-modality statistical shape modelling method
【24h】

3D right ventricular endocardium segmentation in cardiac magnetic resonance images by using a new inter-modality statistical shape modelling method

机译:新的模态统计形状建模方法在心脏磁共振图像中进行3D右心室心内膜分割

获取原文
获取原文并翻译 | 示例

摘要

Objective: Statistical shape modelling (SSM) has established as a powerful method for segmenting the left ventricle in cardiac magnetic resonance (CMR) images However, applying them to segment the right ventricle (RV) is not straightforward because of the complex structure of this chamber. Our aim was to develop a new inter-modality SSM-based approach to detect the RV endocardium in CMR data.Methods: Real-time transthoracic 3D echocardiographic (3DE) images of 219 retrospective patients were used to populate a large database containing 4347 3D RV surfaces and train a model. The initial position, orientation and scale of the model in the CMR stack were semi-automatically derived. The detection process consisted in iteratively deforming the model to match endocardial borders in each CMR plane until convergence was reached. Clinical values obtained with the presented SSM method were compared with gold-standard (GS) corresponding parameters.Results: CMR images of 50 patients with different pathologies were used to test the proposed segmentation method. Average processing time was 2 min (including manual initialization) per patient. High correlations (r(2) > 0.76) and not significant bias (Bland-Altman analysis) were observed when evaluating clinical parameters. Quantitative analysis showed high values of Dice coefficient (0.87 +/- 0.03), acceptable Hausdorff distance (9.35 +/- 1.51 mm) and small point-to-surface distance (1.91 +/- 0.26 mm).Conclusion: A novel SSM-based approach to segment the RV endocardium in CMR scans by using a model trained on 3DE-derived RV endocardial surfaces, was proposed. This inter-modality technique proved to be rapid when segmenting the RV endocardium with an accurate anatomical delineation, in particular in apical and basal regions. (C) 2020 Elsevier Ltd. All rights reserved.
机译:目的:建立统计形状模型(SSM)作为在心脏磁共振(CMR)图像中分割左心室的有效方法,但是,由于该腔室的结构复杂,将其应用于分割右心室(RV)并不容易。我们的目的是开发一种新的基于SSM的多模态方法,以检测CMR数据中的RV心内膜。方法:使用219例回顾性患者的实时经胸3D超声心动图(3DE)图像填充包含4347 3D RV的大型数据库曲面并训练模型。该模型在CMR堆栈中的初始位置,方向和比例是半自动得出的。检测过程包括反复使模型变形以匹配每个CMR平面中的心内膜边界,直到达到收敛为止。将所提出的SSM方法获得的临床值与金标准(GS)的相应参数进行比较。结果:使用50例不同病理类型的患者的CMR图像来检验所提出的分割方法。每位患者的平均处理时间为2分钟(包括手动初始化)。评估临床参数时,观察到高度相关性(r(2)> 0.76)且没有显着偏倚(Bland-Altman分析)。定量分析显示出高的Dice系数(0.87 +/- 0.03),可接受的Hausdorff距离(9.35 +/- 1.51 mm)和小的点到表面距离(1.91 +/- 0.26 mm)。结论:新型SSM-提出了一种使用在3DE衍生的RV心内膜表面训练的模型在CMR扫描中分割RV心内膜的方法。当以准确的解剖学轮廓分割RV心内膜时,尤其是在根尖和基底区域,这种跨模态技术被证明是快速的。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号