首页> 外文期刊>Biomedical signal processing and control >Medical image segmentation algorithm based on feedback mechanism convolutional neural network
【24h】

Medical image segmentation algorithm based on feedback mechanism convolutional neural network

机译:基于反馈机制卷积神经网络的医学图像分割算法

获取原文
获取原文并翻译 | 示例

摘要

The traditional image segmentation method relies on artificial means to extract and select information such as edges, colors and textures in the image. It not only consumes a lot of time and effort, but also requires certain expertise to obtain useful feature information which no longer meets the practical application requirements of medical image segmentation and recognition. As an efficient image segmentation method, Convolutional Neural Networks (CNNs) have been widely promoted and applied in the field of medical image segmentation. However, CNNs that rely on simple feedforward methods have not met the actual needs of the rapid development of the medical field. Therefore, inspired by the feedback mechanism of human visual cortex, we give a deep research on how to build a computational model of feedback mechanism in deep convolutional neural networks. And effective feedback mechanism calculation models and operation frameworks are proposed. In this paper, to solve the feedback optimization problem, we propose two new algorithms based on the greedy strategy. We analyze the functional differences of these two algorithms, and propose a new feedback convolutional neural network algorithm based on the neuron pathway pruning and pattern information recovering algorithms. For the problem that it is difficult to find and extract effective features in medical image segmentation, we propose a medical image segmentation algorithm based on feedback mechanism convolutional neural network. The basic idea is as follows. Firstly, using the unlabeled image block sample training, learning and extracting the deep features of the image to construct feedback mechanism convolutional neural network models. Then, using the model to classify the pixel block samples in the medical image to be segmented, and the initial regions of the image is obtained. Finally, the initial results are optimized by threshold segmentation and morphological methods to obtain accurate medical image segmentation results. Experiments show that the proposed segmentation method not only has high segmentation accuracy, but also has extremely high adaptive segmentation ability for various medical images. (C) 2019 Published by Elsevier Ltd.
机译:传统的图像分割方法依靠人工手段来提取和选择信息,例如图像中的边缘,颜色和纹理。它不仅耗费大量时间和精力,而且还需要某些专业知识来获得有用的特征信息,而这些信息不再满足医学图像分割和识别的实际应用要求。作为一种有效的图像分割方法,卷积神经网络(CNN)已被广泛推广并应用于医学图像分割领域。但是,依靠简单前馈方法的CNN不能满足医学领域快速发展的实际需求。因此,受人类视觉皮层反馈机制的启发,我们对如何在深度卷积神经网络中建立反馈机制的计算模型进行了深入研究。提出了有效的反馈机制计算模型和操作框架。为了解决反馈优化问题,本文提出了两种基于贪婪策略的新算法。我们分析了这两种算法的功能差异,并基于神经元路径修剪和模式信息恢复算法,提出了一种新的反馈卷积神经网络算法。针对医学图像分割中难以找到和提取有效特征的问题,提出了一种基于反馈机制卷积神经网络的医学图像分割算法。基本思想如下。首先,利用未标记的图像块样本训练,学习并提取图像的深层特征,以构建反馈机制卷积神经网络模型。然后,使用该模型对要分割的医学图像中的像素块样本进行分类,从而获得图像的初始区域。最后,通过阈值分割和形态学方法对初始结果进行优化,以获得准确的医学图像分割结果。实验表明,提出的分割方法不仅具有较高的分割精度,而且对各种医学图像具有极高的自适应分割能力。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号