首页> 外文期刊>Biomedical signal processing and control >Segmentation of bleeding regions in wireless capsule endoscopy for detection of informative frames
【24h】

Segmentation of bleeding regions in wireless capsule endoscopy for detection of informative frames

机译:无线胶囊内窥镜中出血区域的分割以检测信息帧

获取原文
获取原文并翻译 | 示例

摘要

Wireless capsule endoscopy (WCE) is an effective means for diagnosis of gastrointestinal disorders. Detection of informative scenes in WCE video could reduce the length of transmitted videos and help the diagnosis procedure. In this paper, we investigate the problem of simplification of neural networks for automatic bleeding region segmentation inside capsule endoscopy device. Suitable color channels are selected as neural networks inputs, and image classification is conducted using a multi-layer perceptron (MLP) and a convolutional neural network (CNN) separately. Both CNN and MLP structures are simplified to reduce the number of computational operations. Performances of two simplified networks are evaluated on a WCE bleeding image dataset using the DICE score. Simulation results show that applying simplification methods on both MLP and CNN structures reduces the number of computational operations significantly with AUC-ROC greater than 0.97. Although CNN performs better in comparison with the simplified MLP, the simplified MLP segments bleeding regions with a significantly smaller number of computational operations. Concerning the importance of having a simple structure or a more accurate model, each of the designed structures could be selected for inside capsule implementation. (C) 2019 Elsevier Ltd. All rights reserved.
机译:无线胶囊内窥镜检查(WCE)是诊断胃肠道疾病的有效手段。在WCE视频中检测信息丰富的场景可以减少传输的视频的长度,并有助于诊断过程。在本文中,我们研究了胶囊内窥镜设备内部自动出血区域分割的神经网络简化问题。选择合适的颜色通道作为神经网络的输入,并分别使用多层感知器(MLP)和卷积神经网络(CNN)进行图像分类。 CNN和MLP结构都得到简化,以减少计算操作的数量。使用DICE分数在WCE出血图像数据集上评估两个简化网络的性能。仿真结果表明,在ALP-ROC大于0.97的情况下,在MLP和CNN结构上应用简化方法会显着减少计算操作的次数。尽管与简化的MLP相比,CNN的性能更好,但是简化的MLP用显着较少的计算操作来分割出血区域。关于具有简单结构或更精确模型的重要性,可以选择每个设计的结构用于内部胶囊实施。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号