首页> 外文期刊>Biomedical signal processing and control >Fuzzy model-based controller for blood glucose control in type 1 diabetes: An LMI approach
【24h】

Fuzzy model-based controller for blood glucose control in type 1 diabetes: An LMI approach

机译:基于模糊模型的1型糖尿病血糖控制控制器:LMI方法

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with designing a robust controller with H-infinity, performance index criteria for regulating the glucose-insulin level in type 1 diabetes. The proposed approach employs a Takagi-Sugeno (TS) fuzzy modeling and fuzzy model-based parallel distributed compensation (PDC) and non-parallel distributed compensation (non-PDC) schemes to design a stabilizing control law for the injecting insulin in silico. Deploying a non-quadratic Lyapunov function (NQLF) candidate, the stabilization conditions are derived in terms of linear matrix inequalities (LMIs) and solved by convex optimization techniques. Furthermore, based on the convex property of the membership functions, a new null term is defined which increases the degree of freedom of the proposed LMI constraints and reduces the stabilization conditions conservativeness. The diabetes models that are considered are nonlinear minimal Bergman and Tolic models that describe the glucose-insulin process in diabetes type 1. Based on the so-called sector nonlinearity approach (SNA), the equivalent TS fuzzy models of the Bergman and Talk models are obtained. Then, the stabilization LMI conditions are solved and the PDC and non-PDC controllers are designed. Simulation results are obtained with a single patient testing parameters uncertainties and verify the advantages of the proposed robust control technique in dealing with the effects of external meal disturbance and maintaining the blood glucose concentration in the desired region to avoid the hypoglycemia and hyperglycemia disorders. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文旨在设计一种具有H-无穷大,性能指标标准的鲁棒控制器,用于调节1型糖尿病患者的葡萄糖-胰岛素水平。所提出的方法采用了Takagi-Sugeno(TS)模糊建模和基于模糊模型的并行分布补偿(PDC)和非并行分布补偿(non-PDC)方案,以设计用于计算机注射胰岛素的稳定控制律。部署非二次Lyapunov函数(NQLF)候选者,将根据线性矩阵不等式(LMI)导出稳定条件,并通过凸优化技术对其进行求解。此外,基于隶属函数的凸性质,定义了一个新的空项,该空项增加了所提出的LMI约束的自由度并降低了稳定条件的保守性。所考虑的糖尿病模型是描述1型糖尿病患者葡萄糖-胰岛素过程的非线性最小Bergman模型和Tolic模型。基于所谓的扇形非线性方法(SNA),Bergman模型和Talk模型的等效TS模糊模型为获得。然后,解决了稳定的LMI条件,并设计了PDC和非PDC控制器。通过单个患者测试参数不确定性获得仿真结果,并验证了所提出的鲁棒控制技术在处理外部进餐干扰的影响以及将血糖浓度维持在所需区域以避免低血糖和高血糖症方面的优势。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号