首页> 外文期刊>Biomedical signal processing and control >Classification of melanoma based on feature similarity measurement for codebook learning in the bag-of-features model
【24h】

Classification of melanoma based on feature similarity measurement for codebook learning in the bag-of-features model

机译:基于特征相似性度量的黑素瘤分类用于特征包模型中的密码本学习

获取原文
获取原文并翻译 | 示例

摘要

Bag-of-features (BoF) model based melanoma classification methods can effectively assist dermatologists to diagnose skin diseases. Codebook learning is a key step in the BoF model and the k-means clustering algorithm is often used to learn a codebook. However, the cluster centers generated by k-means algorithm are irresistibly attracted to the denser regions. This produces a suboptimal codebook in which most of the clusters are located in dense regions and a few are in sparse regions. Therefore, this can easily affect the classification accuracy. In this paper, we develop a novel methodology for classifying skin lesions. Firstly, we propose a new codebook learning algorithm based on feature similarity measurement (FSM) to effectively quantify the original features of melanomas. We utilize the combination of the linearly independent and linear prediction (LP) algorithms to measure feature similarity. Especially, the code-words learned by the proposed FSM algorithm are not affected by the density of samples. Therefore, a more discriminating BoF histogram for the melanoma classification is achieved. Secondly, we propose a melanoma classification method based on the FSM codebook learning algorithm. In particular, we adopt the BoF histogram fusion strategy of different feature descriptors, i.e., RGB color histogram and scale-invariant feature transform (SIFT). Finally, the experimental results show that the proposed melanoma classification method outperforms some state-of-the-art methods in terms of classification accuracy and efficiency. The results also show the performance of the proposed method is greatly improved by the use of the proposed codebook learning algorithm. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于功能袋(BoF)模型的黑色素瘤分类方法可以有效地帮助皮肤科医生诊断皮肤疾病。代码簿学习是BoF模型中的关键步骤,并且k-means聚类算法通常用于学习代码簿。然而,由k均值算法生成的聚类中心不可抗拒地吸引到了较密集的区域。这会产生次优码本,其中大多数群集位于密集区域,而少数群集位于稀疏区域。因此,这很容易影响分类精度。在本文中,我们开发了一种用于分类皮肤损伤的新颖方法。首先,我们提出了一种基于特征相似度测量(FSM)的新码本学习算法,以有效地量化黑素瘤的原始特征。我们利用线性独立和线性预测(LP)算法的组合来测量特征相似度。特别地,通过所提出的FSM算法学习的代码字不受样本密度的影响。因此,实现了用于黑色素瘤分类的更具区别性的BoF直方图。其次,我们提出了一种基于FSM码本学习算法的黑色素瘤分类方法。特别是,我们采用了不同特征描述符的BoF直方图融合策略,即RGB颜色直方图和尺度不变特征变换(SIFT)。最后,实验结果表明,所提出的黑色素瘤分类方法在分类准确度和效率方面均优于一些最新方法。结果还表明,通过使用所提出的码本学习算法,所提出的方法的性能大大提高。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2019年第5期|200-209|共10页
  • 作者单位

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China|Xiangtan Univ, Postdoctoral Res Stn Mech, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China;

    Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China|Xiangnan Univ, Coll Software & Commun Engn, Chenzhou 423043, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bag of features; Codebook learning; Feature similarity measurement; Melanoma classification;

    机译:特色袋;密码本学习;特征相似度测量;黑素瘤分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号