首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >High-Resolution Remote-Sensing Image Classification via an Approximate Earth Mover's Distance-Based Bag-of-Features Model
【24h】

High-Resolution Remote-Sensing Image Classification via an Approximate Earth Mover's Distance-Based Bag-of-Features Model

机译:通过基于地动车的基于距离的特征包模型进行高分辨率的遥感图像分类

获取原文
获取原文并翻译 | 示例

摘要

High-resolution remote-sensing image classification is a challenging task. In this letter, we first propose a bag-of-features (BOF) model-based classification framework for high-resolution remote-sensing images via Earth mover's distance (EMD) to perform histogram matching. Compared with conventional BOF, EMD-based BOF is insensitive to vector quantization and can explore the relations among visual codes. In addition, such relations can be utilized as a key discriminative feature for image classification task. However, EMD is not practically utilized because of expensive computational cost. Motivated by Pele and Werman, we propose a faster approximate EMD (AEMD), and our AEMD-based BOF can inherit the advantages of EMD. Experimental results on a multicategory remote-sensing image data set demonstrate the effectiveness of our classification framework.
机译:高分辨率遥感影像分类是一项艰巨的任务。在这封信中,我们首先提出一个基于特征包(BOF)模型的分类框架,用于通过推土机距离(EMD)进行高分辨率遥感图像执行直方图匹配。与传统的BOF相比,基于EMD的BOF对矢量量化不敏感,可以探索可视代码之间的关系。另外,这种关系可以用作图像分类任务的关键判别特征。然而,由于昂贵的计算成本,实际上没有使用EMD。受Pele和Werman的启发,我们提出了一种更快的近似EMD(AEMD),并且基于AEMD的BOF可以继承EMD的优势。在多类别遥感图像数据集上的实验结果证明了我们分类框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号