首页> 外文期刊>Biomedical signal processing and control >Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean instantaneous frequency square and their parameters ratio
【24h】

Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean instantaneous frequency square and their parameters ratio

机译:使用均方根频率,主频率,均方根瞬时频率平方和它们的参数比率对发作性和发作性脑电图进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this work, we have proposed to use root mean square (RMS) frequency f(r) and dominant frequency f(d) along with the ratio of their contributing parameters as features for classification of interictal and ictal electroencephalogram (EEG). Empirical mode decomposition (EMD) is used for decomposing EEG into a finite set of intrinsic mode functions (IMFs). IMFs are then represented into analytic form by applying Hilbert transform over it. Analytical form of these IMFs are utilized to extract the features. Kruskal-Wallis test was applied to determine features from first two IMFs to be used for classification purpose using support vector machine (SVM). A novel feature root mean instantaneous frequency square (RMIFS)f(R) been proposed using relationship between RMS frequency and dominant frequency to define it as square root of the sum of time averaged instantaneous frequency spread around center frequency and square of center frequency. It is also been used along with its parameters ratio for ictal and interictal classification. The best results were observed using RMS frequency and its parameters ratio from IMF2 to discriminate ictal from interictal. The highest average accuracy and sensitivity observed was 99.91%, 100%. An adaptive thresholding method has also been proposed in this work to recover the false positives. Adaptive thresholding was able to recover the average accuracy. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在这项工作中,我们建议使用均方根(RMS)频率f(r)和主频f(d)以及它们的贡献参数之比作为对发作间隔和发作间隔脑电图(EEG)进行分类的特征。经验模式分解(EMD)用于将EEG分解为有限的一组固有模式函数(IMF)。然后通过对其进行希尔伯特变换,将IMF表示为解析形式。这些IMF的分析形式用于提取特征。运用Kruskal-Wallis检验确定了使用支持向量机(SVM)用于分类目的的前两个IMF的特征。提出了一种新颖的特征均方根瞬时频率平方(RMIFS)f(R),利用RMS频率和主频之间的关系将其定义为围绕中心频率和中心频率平方的时间平均瞬时频率之和的平方根。它也与参数比值一起用于ictal和interictal分类。使用RMS频率及其从IMF2的参数比率来区分小波和小波,可以观察到最佳结果。观察到的最高平均准确度和灵敏度为99.91%,100%。在这项工作中还提出了一种自适应阈值方法来恢复误报。自适应阈值能够恢复平均精度。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号