首页> 外文期刊>Biomedical signal processing and control >A visual attention guided unsupervised feature learning for robust vessel delineation in retinal images
【24h】

A visual attention guided unsupervised feature learning for robust vessel delineation in retinal images

机译:视觉注意引导无监督特征学习,可在视网膜图像中进行可靠的血管描绘

获取原文
获取原文并翻译 | 示例

摘要

Background and objective: Accurate segmentation of retinal vessels from color fundus images play a significant role in early diagnosis of various ocular, systemic and neuro-degenerative diseases. Segmenting retinal vessels is challenging due to varying nature of vessel caliber, the proximal presence of pathological lesions, strong central vessel reflex and relatively low contrast images. Most existing methods mainly rely on carefully designed hand-crafted features to model the local geometrical appearance of vasculature structures, which often lacks the discriminative capability in segmenting vessels from a noisy and cluttered background.
机译:背景与目的:从彩色眼底图像中准确分割视网膜血管在各种眼,系统和神经退行性疾病的早期诊断中起着重要作用。由于血管口径的变化,病理性病变的近端存在,强烈的中央血管反射和相对较低的对比度图像,对视网膜血管进行分割具有挑战性。大多数现有方法主要依靠精心设计的手工特征来对脉管系统结构的局部几何外观进行建模,而这通常缺乏区分血管的方法,该能力是从嘈杂和混乱的背景中分割血管。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号