首页> 外文期刊>Biomedical signal processing and control >Improved nearest neighbor interpolators based on confidence region in medical image registration
【24h】

Improved nearest neighbor interpolators based on confidence region in medical image registration

机译:基于置信区域的医学图像配准改进的最近邻插值器

获取原文
获取原文并翻译 | 示例

摘要

In order to reduce artifacts in match metric and improve the registration speed in medical image registration, three types of improved nearest neighbor (NN) interpolators based on confidence region (CR) are studied. These improved NN interpolators include: (1) NN based on deterministic confidence region (DCR), DCRNN; (2) NN based on stochastic confidence region (SCR), SCRNN; (3) NN based on confidence region integrating deterministic information and stochastic information (DSCR), DSCRNN. The values of normalized mutual information (NMI) are deterministic and accurate at any grid translation position when any improved NN interpolator is used. The smoothness of the NMI curves is compared by applying DCRNN, SCRNN, and DSCRNN interpolators to rigid medical image registration with different numbers of intensity bins and random variables. The results of tests show that the new DSCRNN interpolator outperforms DCRNN and SCRNN in curve smoothness and anti-micro-fluctuation, and outperforms the conditional NN, PVI and LI interpolators in convergence performance and noise immunity.
机译:为了减少匹配度量中的伪像并提高医学图像配准中的配准速度,研究了三种基于置信区域(CR)的改进的最近邻(NN)插值器。这些改进的神经网络插值器包括:(1)基于确定性置信区域(DCR)的神经网络; (2)基于随机置信区域(SCR)的NN,SCRNN; (3)基于融合确定性信息和随机信息(DSCR)的置信区域的NN。当使用任何改进的NN插值器时,归一化互信息(NMI)的值在任何网格平移位置都是确定的且准确的。通过将DCRNN,SCRNN和DSCRNN插值器应用于具有不同数量的强度容器和随机变量的刚性医学图像配准,可以比较NMI曲线的平滑度。测试结果表明,新型DSCRNN插值器在曲线平滑度和抗微波动性方面优于DCRNN和SCRNN,在收敛性能和抗噪性方面均优于条件NN,PVI和LI插值器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号