首页> 外文期刊>Biomedical signal processing and control >Automatic liver segmentation in MRI images using an iterative watershed algorithm and artificial neural network
【24h】

Automatic liver segmentation in MRI images using an iterative watershed algorithm and artificial neural network

机译:使用分水岭算法和人工神经网络的MRI图像自动肝分割

获取原文
获取原文并翻译 | 示例

摘要

Precise liver segmentation in abdominal MRI images is one of the most important steps for the computer-aided diagnosis of liver pathology. The first and essential step for diagnosis is automatic liver segmentation, and this process remains challenging. Extensive research has examined liver segmentation; however, it is challenging to distinguish which algorithm produces more precise segmentation results that are applicable to various medical imaging techniques. In this paper, we present a new automatic system for liver segmentation in abdominal MRI images. The system includes several successive steps. Preprocessing is applied to enhance the image (edge-preserved noise reduction) by using mathematical morphology. The proposed algorithm for liver region extraction is a combined algorithm that utilizes MLP neural networks and watershed algorithm. The traditional watershed transformation generally results in oversegmentation when directly applied to medical image segmentation. Therefore, we use trained neural networks to extract features of the liver region. The extracted features are used to monitor the quality of the segmentation using the watershed transform and adjust the required parameters automatically. The process of adjusting parameters is performed sequentially in several iterations. The proposed algorithm extracts liver region in one slice of the MRI images and the boundary tracking algorithm is suggested to extract the liver region in other slices, which is left as our future work. This system was applied to a series of test images to extract the liver region. Experimental results showed positive results for the proposed algorithm.
机译:腹部MRI图像中的精确肝分割是计算机辅助肝病理诊断的最重要步骤之一。诊断的第一步也是必不可少的步骤是自动肝分割,这一过程仍然具有挑战性。广泛的研究已经检查了肝的分割。然而,区分哪种算法会产生适用于各种医学成像技术的更精确的分割结果具有挑战性。在本文中,我们提出了一种在腹部MRI图像中进行肝脏分割的新自动系统。该系统包括几个连续的步骤。通过使用数学形态来进行预处理以增强图像(保留边缘的降噪)。提出的肝脏区域提取算法是一种结合了MLP神经网络和分水岭算法的算法。当直接应用于医学图像分割时,传统的分水岭变换通常会导致分割过度。因此,我们使用训练有素的神经网络来提取肝脏区域的特征。提取的特征用于使用分水岭变换监视分割质量,并自动调整所需的参数。调整参数的过程按几次迭代顺序执行。提出的算法在MRI图像的一个切片中提取肝脏区域,并建议采用边界跟踪算法在其他切片中提取肝脏区域,这留待我们今后的工作。该系统应用于一系列测试图像以提取肝脏区域。实验结果证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号