首页> 外文期刊>Biomedical signal processing and control >ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform
【24h】

ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform

机译:使用PCA,LDA,ICA和离散小波变换进行心电图心跳分类

获取原文
获取原文并翻译 | 示例

摘要

Electrocardiogram (ECG) is the P-QRS-T wave, representing the cardiac function. The information concealed in the ECG signal is useful in detecting the disease afflicting the heart. It is very difficult to identify the subtle changes in the ECG in time and frequency domains. The Discrete Wavelet Transform (DWT) can provide good time and frequency resolutions and is able to decipher the hidden complexities in the ECG. In this study, five types of beat classes of arrhythmia as recommended by Association for Advancement of Medical Instrumentation (AAMI) were analyzed namely: non-ectopic beats, supra-ventricular ectopic beats, ventricular ectopic beats, fusion betas and unclassifiable and paced beats. Three dimensionality reduction algorithms; Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) were independently applied on DWT sub bands for dimensionality reduction. These dimensionality reduced features were fed to the Support Vector Machine (SVM), neural network (NN) and probabilistic neural network (PNN) classifiers for automated diagnosis. ICA features in combination with PNN with spread value (σ) of 0.03 performed better than the PCA and LDA. It has yielded an average sensitivity, specificity, positive predictive value (PPV) and accuracy of 99.97%, 99.83%, 99.21% and 99.28% respectively using ten-fold cross validation scheme.
机译:心电图(ECG)是P-QRS-T波,代表心脏功能。隐藏在ECG信号中的信息可用于检测困扰心脏的疾病。在时域和频域中很难确定ECG的细微变化。离散小波变换(DWT)可以提供良好的时间和频率分辨率,并能够解密ECG中隐藏的复杂性。在这项研究中,分析了美国医疗器械进步协会(AAMI)推荐的五种心律失常心律失常类型:非异位心律,室上性异位心律,心室异位心律,融合β和无法分类的心律失常。三维降维算法;将主成分分析(PCA),线性判别分析(LDA)和独立成分分析(ICA)分别应用于DWT子带,以降低尺寸。这些降维特征已馈入支持向量机(SVM),神经网络(NN)和概率神经网络(PNN)分类器,以进行自动诊断。 ICA特征与散布值(σ)为0.03的PNN组合的性能优于PCA和LDA。使用十倍交叉验证方案,其平均灵敏度,特异性,阳性预测值(PPV)和准确性分别为99.97%,99.83%,99.21%和99.28%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号