首页> 外文期刊>Biomedical signal processing and control >Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task
【24h】

Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task

机译:轮廓积分任务期间拍摄的功能性生物医学图像的二维整体经验模式分解

获取原文
获取原文并翻译 | 示例

摘要

In cognitive neuroscience, extracting characteristic textures and features from functional imaging modalities which could be useful in identifying particular cognitive states across different conditions is still an important field of study. This paper explores the potential of two-dimensional ensemble empirical mode decomposition (2DEEMD) to extract such textures, so-called bidimensional intrinsic mode functions (BIMFs), of functional biomedical images, especially functional magnetic resonance images (fMRI) taken while performing a contour integration task. To identify most informative textures, i.e. BIMFs, a support vector machine (SVM) as well as a random forest (RF) classifier is trained for two different stimulus/response conditions. Classification performance is used to estimate the discriminative power of extracted BIMFs. The latter are then analyzed according to their spatial distribution of brain activations related with contour integration. Results distinctly show the participation of frontal brain areas in contour integration. Employing features generated from textures represented by BIMFs exhibit superior classification performance when compared with a canonical general linear model (GLM) analysis employing statistical parametric mapping (SPM).
机译:在认知神经科学中,从功能成像模态中提取特征性纹理和特征,可能有助于识别不同条件下的特定认知状态,这仍然是一个重要的研究领域。本文探索了二维整体经验模式分解(2DEEMD)提取潜在的功能生物医学图像(尤其是执行轮廓时拍摄的功能磁共振图像)的纹理(所谓的二维固有模式函数(BIMF))的潜力整合任务。为了识别最有用的纹理,即BIMF,对支持向量机(SVM)和随机森林(RF)分类器进行了训练,以了解两种不同的刺激/响应条件。分类性能用于估计提取的BIMF的判别力。然后根据与轮廓整合有关的大脑激活的空间分布分析后者。结果清楚地显示了额叶大脑区域参与轮廓整合。与采用统计参数映射(SPM)的规范通用线性模型(GLM)分析相比,采用BIMF表示的纹理生成的特征显示出优异的分类性能。

著录项

  • 来源
    《Biomedical signal processing and control》 |2014年第9期|218-236|共19页
  • 作者单位

    CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany,Information Sciences, University of Regensburg, Germany;

    CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany,Information Sciences, University of Regensburg, Germany;

    IEETA DETI, Universidade de Aveiro, 3810 Aveiro, Portugal;

    Experimental Psychology, University of Regensburg, Germany;

    Cognition and Oscillations Lab, Department of Psychology, University of Konstanz, Germany;

    Information Sciences, University of Regensburg, Germany;

    CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号