首页> 外文期刊>Biomedical signal processing and control >EEG-fMRI: Dictionary learning for removal of ballistocardiogram artifact from EEG
【24h】

EEG-fMRI: Dictionary learning for removal of ballistocardiogram artifact from EEG

机译:脑电图功能磁共振成像:词典学习,以消除脑电图的心电图伪影

获取原文
获取原文并翻译 | 示例

摘要

In this paper, artifact removal from biomedical signals is addressed. We particularly focus on removing ballistocardiogram (BCG) artifact from EEG. BCG mainly appears in EEG signals during simultaneous EEG-fMRI recordings. Different from most existing artifact removal techniques, we propose a method based on dictionary learning framework. Due to strength of sparsifying dictionaries in applications such as image denoising, it is expected to succeed in BCG removal task as well. This is investigated in the proposed approach where a dictionary is learned from original EEG recording. The dictionary is designed to locally model BCG characteristics. After achieving the dictionary, BCG can be simply subtracted from the original signal and the clean EEG is obtained. Our experimental results on both synthetic and real data confirm the effectiveness of the proposed method. The results reveal the flexibility of learned dictionary for modeling the fluctuations in artifact, and removing it from original EEG signals. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,解决了从生物医学信号中去除伪影的问题。我们特别着重于从EEG去除心电图(BCG)伪影。 BCG主要出现在同时进行EEG-fMRI记录的EEG信号中。与大多数现有的工件去除技术不同,我们提出了一种基于字典学习框架的方法。由于在诸如图像去噪之类的应用中稀疏词典的优势,预计它也将成功完成BCG去除任务。在提出的方法中对此进行了研究,在该方法中,从原始EEG记录中学习了字典。该词典旨在本地模拟BCG特征。在获得字典之后,可以简单地从原始信号中减去BCG,并获得干净的EEG。我们在综合和真实数据上的实验结果证实了该方法的有效性。结果表明,学习词典的灵活性可用于对伪影波动进行建模,并将其从原始EEG信号中删除。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号